• 제목/요약/키워드: virtual computing systems

검색결과 211건 처리시간 0.029초

Performance Evaluation of Scheduling Algorithms according to Communication Cost in the Grid System of Co-allocation Environment (Co-allocation 환경의 그리드 시스템에서 통신비용에 따른 스케줄링 알고리즘의 성능 분석)

  • Kang, Oh-Han;Kang, Sang-Seong;Kim, Jin-Suk
    • The KIPS Transactions:PartA
    • /
    • 제14A권2호
    • /
    • pp.99-106
    • /
    • 2007
  • Grid computing, a mechanism which uses heterogeneous systems that are geographically distributed, draws attention as a new paradigm for the next generation operation of parallel and distributed computing. The importance of grid computing concerning communication cost is very huge because grid computing furnishes uses with integrated virtual computing service, in which a number of computer systems are connected by a high-speed network. Therefore, to reduce the execution time, the scheduling algorithm in grid environment should take communication cost into consideration as well as computing ability of resources. However, most scheduling algorithms have not only ignored the communication cost by assuming that all tasks were dealt in one cluster, but also did not consider the overhead of communication cost when the tasks were processed in a number of clusters. In this paper, the functions of original scheduling algorithms are analyzed. More importantly, the functions of algorithms are compared and analyzed with consideration of communication cost within the co allocation environment, in which a task is performed separately in many clusters.

The Vulnerability Analysis for Virtualization Environment Risk Model Management Systematization (가상화 환경 위험도 관리체계화를 위한 취약점 분석)

  • Park, Mi-Young;Seung, Hyen-Woo;Lim, Yang-Mi
    • Journal of Internet Computing and Services
    • /
    • 제14권3호
    • /
    • pp.23-33
    • /
    • 2013
  • Recently in the field of IT, cloud computing technology has been deployed rapidly in the current society because of its flexibility, efficiency and cost savings features. However, cloud computing system has a big problem of vulnerability in security. In order to solve the vulnerability of cloud computing systems security in this study, impact types of virtual machine about the vulnerability were determined and the priorities were determined according to the risk evaluation of virtual machine's vulnerability. For analyzing the vulnerability, risk measurement standards about the vulnerability were defined based on CVSS2.0, which is an open frame work; and the risk measurement was systematized by scoring for relevant vulnerabilities. Vulnerability risk standards are considered to suggest fundamental characteristics of vulnerability and to provide the degree of risks and consequently to be applicable to technical guides to minimize the vulnerability. Additionally, suggested risk standard of vulnerability is meaningful as the study content itself and could be used in technology policy project which is to be conducted in the future.

Study of Data Placement Schemes for SNS Services in Cloud Environment

  • Chen, Yen-Wen;Lin, Meng-Hsien;Wu, Min-Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3203-3215
    • /
    • 2015
  • Due to the high growth of SNS population, service scalability is one of the critical issues to be addressed. The cloud environment provides the flexible computing and storage resources for services deployment, which fits the characteristics of scalable SNS deployment. However, if the SNS related information is not properly placed, it will cause unbalance load and heavy transmission cost on the storage virtual machine (VM) and cloud data center (CDC) network. In this paper, we characterize the SNS into a graph model based on the users' associations and interest correlations. The node weight represents the degree of associations, which can be indexed by the number of friends or data sources, and the link weight denotes the correlation between users/data sources. Then, based on the SNS graph, the two-step algorithm is proposed in this paper to determine the placement of SNS related data among VMs. Two k-means based clustering schemes are proposed to allocate social data in proper VM and physical servers for pre-configured VM and dynamic VM environment, respectively. The experimental example was conducted and to illustrate and compare the performance of the proposed schemes.

A Load-Balancing Approach Using an Improved Simulated Annealing Algorithm

  • Hanine, Mohamed;Benlahmar, El-Habib
    • Journal of Information Processing Systems
    • /
    • 제16권1호
    • /
    • pp.132-144
    • /
    • 2020
  • Cloud computing is an emerging technology based on the concept of enabling data access from anywhere, at any time, from any platform. The exponential growth of cloud users has resulted in the emergence of multiple issues, such as the workload imbalance between the virtual machines (VMs) of data centers in a cloud environment greatly impacting its overall performance. Our axis of research is the load balancing of a data center's VMs. It aims at reducing the degree of a load's imbalance between those VMs so that a better resource utilization will be provided, thus ensuring a greater quality of service. Our article focuses on two phases to balance the workload between the VMs. The first step will be the determination of the threshold of each VM before it can be considered overloaded. The second step will be a task allocation to the VMs by relying on an improved and faster version of the meta-heuristic "simulated annealing (SA)". We mainly focused on the acceptance probability of the SA, as, by modifying the content of the acceptance probability, we could ensure that the SA was able to offer a smart task distribution between the VMs in fewer loops than a classical usage of the SA.

2.5D human pose estimation for shadow puppet animation

  • Liu, Shiguang;Hua, Guoguang;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2042-2059
    • /
    • 2019
  • Digital shadow puppet has traditionally relied on expensive motion capture equipments and complex design. In this paper, a low-cost driven technique is presented, that captures human pose estimation data with simple camera from real scenarios, and use them to drive virtual Chinese shadow play in a 2.5D scene. We propose a special method for extracting human pose data for driving virtual Chinese shadow play, which is called 2.5D human pose estimation. Firstly, we use the 3D human pose estimation method to obtain the initial data. In the process of the following transformation, we treat the depth feature as an implicit feature, and map body joints to the range of constraints. We call the obtain pose data as 2.5D pose data. However, the 2.5D pose data can not better control the shadow puppet directly, due to the difference in motion pattern and composition structure between real pose and shadow puppet. To this end, the 2.5D pose data transformation is carried out in the implicit pose mapping space based on self-network and the final 2.5D pose expression data is produced for animating shadow puppets. Experimental results have demonstrated the effectiveness of our new method.

CacheSCDefender: VMM-based Comprehensive Framework against Cache-based Side-channel Attacks

  • Yang, Chao;Guo, Yunfei;Hu, Hongchao;Liu, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.6098-6122
    • /
    • 2018
  • Cache-based side-channel attacks have achieved more attention along with the development of cloud computing technologies. However, current host-based mitigation methods either provide bad compatibility with current cloud infrastructure, or turn out too application-specific. Besides, they are defending blindly without any knowledge of on-going attacks. In this work, we present CacheSCDefender, a framework that provides a (Virtual Machine Monitor) VMM-based comprehensive defense framework against all levels of cache attacks. In designing CacheSCDefender, we make three key contributions: (1) an attack-aware framework combining our novel dynamic remapping and traditional cache cleansing, which provides a comprehensive defense against all three cases of cache attacks that we identify in this paper; (2) a new defense method called dynamic remapping which is a developed version of random permutation and is able to deal with two cases of cache attacks; (3) formalization and quantification of security improvement and performance overhead of our defense, which can be applicable to other defense methods. We show that CacheSCDefender is practical for deployment in normal virtualized environment, while providing favorable security guarantee for virtual machines.

A Container Orchestration System for Process Workloads

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권4호
    • /
    • pp.270-278
    • /
    • 2023
  • We propose a container orchestration system for process workloads that combines the potential of big data and machine learning technologies to integrate enterprise process-centric workloads. This proposed system analyzes big data generated from industrial automation to identify hidden patterns and build a machine learning prediction model. For each machine learning case, training data is loaded into a data store and preprocessed for model training. In the next step, you can use the training data to select and apply an appropriate model. Then evaluate the model using the following test data: This step is called model construction and can be performed in a deployment framework. Additionally, a visual hierarchy is constructed to display prediction results and facilitate big data analysis. In order to implement parallel computing of PCA in the proposed system, several virtual systems were implemented to build the cluster required for the big data cluster. The implementation for evaluation and analysis built the necessary clusters by creating multiple virtual machines in a big data cluster to implement parallel computation of PCA. The proposed system is modeled as layers of individual components that can be connected together. The advantage of a system is that components can be added, replaced, or reused without affecting the rest of the system.

Improving Performance of I/O Virtualization Framework based on Multi-queue SSD (다중 큐 SSD 기반 I/O 가상화 프레임워크의 성능 향상 기법)

  • Kim, Tae Yong;Kang, Dong Hyun;Eom, Young Ik
    • Journal of KIISE
    • /
    • 제43권1호
    • /
    • pp.27-33
    • /
    • 2016
  • Virtualization has become one of the most helpful techniques in computing systems, and today it is prevalent in several computing environments including desktops, data-centers, and enterprises. However, since I/O layers are implemented to be oblivious to the I/O behaviors on virtual machines (VM), there still exists an I/O scalability issue in virtualized systems. In particular, when a multi-queue solid state drive (SSD) is used as a secondary storage, each system reveals a semantic gap that degrades the overall performance of the VM. This is due to two key problems, accelerated lock contentions and the I/O parallelism issue. In this paper, we propose a novel approach, including the design of virtual CPU (vCPU)-dedicated queues and I/O threads, which efficiently distributes the lock contentions and addresses the parallelism issue of Virtio-blk-data-plane in virtualized environments. Our approach is based on the above principle, which allocates a dedicated queue and an I/O thread for each vCPU to reduce the semantic gap. Our experimental results with various I/O traces clearly show that our design improves the I/O operations per second (IOPS) in virtualized environments by up to 155% over existing QEMU-based systems.

High-revenue Online Provisioning for Virtual Clusters in Multi-tenant Cloud Data Center Network

  • Lu, Shuaibing;Fang, Zhiyi;Wu, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1164-1183
    • /
    • 2019
  • The rapid development of cloud computing and high requirements of operators requires strong support from the underlying Data Center Networks. Therefore, the effectiveness of using resources in the data center networks becomes a point of concern for operators and material for research. In this paper, we discuss the online virtual-cluster provision problem for multiple tenants with an aim to decide when and where the virtual cluster should be placed in a data center network. Our objective is maximizing the total revenue for the data center networks under the constraints. In order to solve this problem, this paper divides it into two parts: online multi-tenancy scheduling and virtual cluster placement. The first part aims to determine the scheduling orders for the multiple tenants, and the second part aims to determine the locations of virtual machines. We first approach the problem by using the variational inequality model and discuss the existence of the optimal solution. After that, we prove that provisioning virtual clusters for a multi-tenant data center network that maximizes revenue is NP-hard. Due to the complexity of this problem, an efficient heuristic algorithm OMS (Online Multi-tenancy Scheduling) is proposed to solve the online multi-tenancy scheduling problem. We further explore the virtual cluster placement problem based on the OMS and propose a novel algorithm during the virtual machine placement. We evaluate our algorithms through a series of simulations, and the simulations results demonstrate that OMS can significantly increase the efficiency and total revenue for the data centers.

A Novel Method for Virtual Machine Placement Based on Euclidean Distance

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권7호
    • /
    • pp.2914-2935
    • /
    • 2016
  • With the increasing popularization of cloud computing, how to reduce physical energy consumption and increase resource utilization while maintaining system performance has become a research hotspot of virtual machine deployment in cloud platform. Although some related researches have been reported to solve this problem, most of them used the traditional heuristic algorithm based on greedy algorithm and only considered effect of single-dimensional resource (CPU or Memory) on energy consumption. With considerations to multi-dimensional resource utilization, this paper analyzed impact of multi-dimensional resources on energy consumption of cloud computation. A multi-dimensional resource constraint that could maintain normal system operation was proposed. Later, a novel virtual machine deployment method (NVMDM) based on improved particle swarm optimization (IPSO) and Euclidean distance was put forward. It deals with problems like how to generate the initial particle swarm through the improved first-fit algorithm based on resource constraint (IFFABRC), how to define measure standard of credibility of individual and global optimal solutions of particles by combining with Bayesian transform, and how to define fitness function of particle swarm according to the multi-dimensional resource constraint relationship. The proposed NVMDM was proved superior to existing heuristic algorithm in developing performances of physical machines. It could improve utilization of CPU, memory, disk and bandwidth effectively and control task execution time of users within the range of resource constraint.