• Title/Summary/Keyword: virtual computing systems

Search Result 211, Processing Time 0.027 seconds

Data-driven Adaptive Safety Monitoring Using Virtual Subjects in Medical Cyber-Physical Systems: A Glucose Control Case Study

  • Chen, Sanjian;Sokolsky, Oleg;Weimer, James;Lee, Insup
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.75-84
    • /
    • 2016
  • Medical cyber-physical systems (MCPS) integrate sensors, actuators, and software to improve patient safety and quality of healthcare. These systems introduce major challenges to safety analysis because the patient's physiology is complex, nonlinear, unobservable, and uncertain. To cope with the challenge that unidentified physiological parameters may exhibit short-term variances in certain clinical scenarios, we propose a novel run-time predictive safety monitoring technique that leverages a maximal model coupled with online training of a computational virtual subject (CVS) set. The proposed monitor predicts safety-critical events at run-time using only clinically available measurements. We apply the technique to a surgical glucose control case study. Evaluation on retrospective real clinical data shows that the algorithm achieves 96% sensitivity with a low average false alarm rate of 0.5 false alarm per surgery.

Migration Agent for Seamless Virtual Environment System in Cloud Computing Network (클라우드 컴퓨팅 네트워크에서 Seamless 가상 환경 시스템 구축을 위한 마이그레이션 에이전트)

  • Won, Dong Hyun;An, Dong Un
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.41-46
    • /
    • 2019
  • In a MMORPG, a typical application of virtual environment systems, it is a common desire to play in a more realistic environment. However, it is very difficult to provide a latency-free virtual environment to a large user base, mainly due to the fact that the real environment must be configured on multiple servers rather than on single server and that data must be shared on the real server when users move from one region to another. Experiencing response delays continuously in the process of information synchronization between servers greatly deteriorates the degree of immersion. In order to solve this problem, it is necessary to minimize the response delay occurring in the information synchronization process between the servers. In this paper, we propose Migration Agent for efficient information synchronization between field servers providing information of virtual environment and minimizing response delay between Field Server and PC(Player Character) and implement it in cloud computing network. In the proposed system, CPU utilization of field server increased by 6 ~ 13%, and response time decreased by 5 ~ 10 seconds over the existing system in 70,000 ~ 90,000 PCs

Performance Management Technique of Remote VR Service for Multiple Users in Container-Based Cloud Environments Sharing GPU (GPU를 공유하는 컨테이너 기반 클라우드 환경에서 다수의 사용자를 위한 원격 VR 서비스의 성능 관리 기법)

  • Kang, Jihun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.1
    • /
    • pp.9-22
    • /
    • 2022
  • Virtual Reality(VR) technology is an interface technology that is actively used in various audio-visual-based applications by showing users a virtual world composed of computer graphics. Since VR-based applications are graphic processing-based applications, expensive computing devices equipped with Graphics Processing Unit(GPU) are essential for graphic processing. This incurs a cost burden on VR application users for maintaining and managing computing devices, and as one of the solutions to this, a method of operating services in cloud environments is being used. This paper proposes a performance management technique to address the problem of performance interference between containers owing to GPU resource competition in container-based high-performance cloud environments in which multiple containers share a single GPU. The proposed technique reduces performance deviation due to performance interference, helping provide uniform performance-based remote VR services for users. In addition, this paper verifies the efficiency of the proposed technique through experiments.

Exploring Support Vector Machine Learning for Cloud Computing Workload Prediction

  • ALOUFI, OMAR
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.374-388
    • /
    • 2022
  • Cloud computing has been one of the most critical technology in the last few decades. It has been invented for several purposes as an example meeting the user requirements and is to satisfy the needs of the user in simple ways. Since cloud computing has been invented, it had followed the traditional approaches in elasticity, which is the key characteristic of cloud computing. Elasticity is that feature in cloud computing which is seeking to meet the needs of the user's with no interruption at run time. There are traditional approaches to do elasticity which have been conducted for several years and have been done with different modelling of mathematical. Even though mathematical modellings have done a forward step in meeting the user's needs, there is still a lack in the optimisation of elasticity. To optimise the elasticity in the cloud, it could be better to benefit of Machine Learning algorithms to predict upcoming workloads and assign them to the scheduling algorithm which would achieve an excellent provision of the cloud services and would improve the Quality of Service (QoS) and save power consumption. Therefore, this paper aims to investigate the use of machine learning techniques in order to predict the workload of Physical Hosts (PH) on the cloud and their energy consumption. The environment of the cloud will be the school of computing cloud testbed (SoC) which will host the experiments. The experiments will take on real applications with different behaviours, by changing workloads over time. The results of the experiments demonstrate that our machine learning techniques used in scheduling algorithm is able to predict the workload of physical hosts (CPU utilisation) and that would contribute to reducing power consumption by scheduling the upcoming virtual machines to the lowest CPU utilisation in the environment of physical hosts. Additionally, there are a number of tools, which are used and explored in this paper, such as the WEKA tool to train the real data to explore Machine learning algorithms and the Zabbix tool to monitor the power consumption before and after scheduling the virtual machines to physical hosts. Moreover, the methodology of the paper is the agile approach that helps us in achieving our solution and managing our paper effectively.

A review on several methods for fast generation of digital Fresnel holograms

  • Tsang, P.W.M.
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.29-32
    • /
    • 2012
  • Computer generated holography (CGH) is technology for generating holograms of synthetic, three dimensional (3D) objects which may not exist in the physical world. The process, however, requires heavy amount of computation as the resolution of a hologram is significantly higher than that of a typical optical image. This paper reviews four modern techniques for fast generation of digital Fresnel holograms which are important in the development of holographic video systems. The methods that will be described include the virtual window, sub-line, wavefront recording plane (WRP), and the interpolative WRP schemes. These works share the common objective to generate digital Fresnel hologram at a speed that is close to the video frame rate, and with complexity which is realizable with affordable computing and reconfigurable hardware devices. The author will present the principles and realization of these works, as well as some potential area of research in digital holography.

Study on Statecharts-based Progressive Behavior LOD Model for Virtual Objects (가상 객체를 위한 스테이트챠트 기반의 점진적인 행위 LOD 모델 연구)

  • Seo, Jin-Seok;Youn, Joo-Sang
    • Journal of Digital Contents Society
    • /
    • v.12 no.2
    • /
    • pp.185-194
    • /
    • 2011
  • This paper introduces a Statecharts-based progressive behavior LOD model for computer games and virtual reality systems. In order to use computing resources efficiently and generate an LOD model having arbitrary complexity, we defined a progressive behavior LOD model which including a Statecharts-based specification process, refinement operations, a switching policy, and an LOD selection policy. Additionally, in order to show the possibility of the proposed approach, we demonstrate an example of progressive LOD models by illustrating a step-by-step design of a virtual vehicle.

Design and Implementation of Service based Virtual Screening System in Grids (그리드에서 서비스 기반 가상 탐색 시스템 설계 및 구현)

  • Lee, Hwa-Min;Chin, Sung-Ho;Lee, Jong-Hyuk;Lee, Dae-Won;Park, Seong-Bin;Yu, Heon-Chang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.6
    • /
    • pp.237-247
    • /
    • 2008
  • A virtual screening is the process of reducing an unmanageable number of compounds to a limited number of compounds for the target of interest by means of computational techniques such as molecular docking. And it is one of a large-scale scientific application that requires large computing power and data storage capability. Previous applications or softwares for molecular docking such as AutoDock, FlexX, Glide, DOCK, LigandFit, ViSION were developed to be run on a supercomputer, a workstation, or a cluster-computer. However the virtual screening using a supercomputer has a problem that a supercomputer is very expensive and the virtual screening using a workstation or a cluster-computer requires a long execution time. Thus we propose a service-based virtual screening system using Grid computing technology which supports a large data intensive operation. We constructed 3-dimensional chemical molecular database for virtual screening. And we designed a resource broker and a data broker for supporting efficient molecular docking service and proposed various services for virtual screening. We implemented service based virtual screening system with DOCK 5.0 and Globus 3.2 toolkit. Our system can reduce a timeline and cost of drug or new material design.

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.

Ubiquitous Car Maintenance Services Using Augmented Reality and Context Awareness (증강현실을 활용한 상황인지기반의 편재형 자동차 정비 서비스)

  • Rhee, Gue-Won;Seo, Dong-Woo;Lee, Jae-Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.3
    • /
    • pp.171-181
    • /
    • 2007
  • Ubiquitous computing is a vision of our future computing lifestyle in which computer systems seamlessly integrate into our everyday lives, providing services and information in anywhere and anytime fashion. Augmented reality (AR) can naturally complement ubiquitous computing by providing an intuitive and collaborative visualization and simulation interface to a three-dimensional information space embedded within physical reality. This paper presents a service framework and its applications for providing context-aware u-car maintenance services using augmented reality, which can support a rich set of ubiquitous services and collaboration. It realizes bi-augmentation between physical and virtual spaces using augmented reality. It also offers a context processing module to acquire, interpret and disseminate context information. In particular, the context processing module considers user's preferences and security profile for providing private and customer-oriented services. The prototype system has been implemented to support 3D animation, TTS (Text-to-Speech), augmented manual, annotation, and pre- and post-augmentation services in ubiquitous car service environments.

The Design of Dynamic Fog Cloud System using mDBaaS

  • Hwang, Chigon;Shin, Hyoyoung;Lee, Jong-Yong;Jung, Kyedong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.59-66
    • /
    • 2017
  • Cloud computing has evolved into a core computing infrastructure for the internet that encompasses content, as well as communications, applications and commerce. By providing powerful computing and communications capabilities in the palm of the hand everywhere with a variety of smart devices, mobile applications such as virtual reality, sensing and navigation have emerged and radically changed the patterns people live. The data that is generated is getting bigger. Cloud computing, on the other hand, has problems with system load and speed due to the collection, processing and control of remote data. To solve this problem, fog computing has been proposed in which data is collected and processed at an edge. In this paper, we propose a system that dynamically selects a fog server that acts as a cloud in the edge. It serves as a mediator in the cloud, and provides information on the services and systems belonging to the cloud to the mobile device so that the mobile device can act as a fog. When the role of the fog system is complete, we provide it to the cloud to virtualize the fog. The heterogeneous problem of data of mobile nodes can be solved by using mDBaaS (Mobile DataBase as a Service) and we propose a system design method for this.