• 제목/요약/키워드: viral diseases

검색결과 661건 처리시간 0.023초

Influence of Glycyrrhizic Acid, Menthol and Their Supramolecular Compounds on the Functional Activity of Rat Mitochondria in in-vitro Experiments

  • Ettibaeva, L.A.;Abdurahmonova, U.K.;Matchanov, A.D.;Allanazarova, D.M.;Halmuratova, Z.T.
    • 대한화학회지
    • /
    • 제65권5호
    • /
    • pp.313-319
    • /
    • 2021
  • Menthol (M) is a cyclic monoterpenode and is a major component of essential oils. Menthol, along with menthol, isomenton, etc., gives taste and odor of the mint plant, and when it comes to menthol in general, L- or (-) -menthol is usually used. Included in pharmaceuticals, cosmetics and pesticides. It has antimicrobial, antibacterial, antioxidant properties. It is also known that the licorice plant (Glycyrrhiza Glabra L.) differs from other types of plants by its medicinal properties. For many years it has been used in folk medicine. Extraction of licorice root revealed up to 25% glycyrrhizinic acid (GA). Its aglycone - glycyrrhizic acid is notable for its structural similarity to the adrenal cortex hormones. Currently, GA and glycyrrhizic acid are widely used in medicine as a remedy for colds, allergies, viral diseases, tumors. The biological activity of menthol and GA-based supramolecular compounds has been poorly studied, and their effect on the functional parameters of rat liver mitochondria has been studied little. For this purpose, in our experiments, the effect of menthol (M), glycyrrhizinic acid (GA) and their supramolecular complexes obtained in different proportions on in vitro and in vivo studies on rat liver mitochondria was studied.

Triglyceride-Rich Lipoproteins and Novel Targets for Anti-atherosclerotic Therapy

  • Reiner, Zeljko
    • Korean Circulation Journal
    • /
    • 제48권12호
    • /
    • pp.1097-1119
    • /
    • 2018
  • Although elevated serum low-density lipoprotein-cholesterol (LDL-C) is without any doubts accepted as an important risk factor for cardiovascular disease (CVD), the role of elevated triglycerides (TGs)-rich lipoproteins as an independent risk factor has until recently been quite controversial. Recent data strongly suggest that elevated TG-rich lipoproteins are an independent risk factor for CVD and that therapeutic targeting of them could possibly provide further benefit in reducing CVD morbidity, events and mortality, apart from LDL-C lowering. Today elevated TGs are treated with lifestyle interventions, and with fibrates which could be combined with omega-3 fatty acids. There are also some new drugs. Volanesorsen, is an antisense oligonucleotid that inhibits the production of the Apo C-III which is crucial in regulating TGs metabolism because it inhibits lipoprotein lipase (LPL) and hepatic lipase activity but also hepatic uptake of TGs-rich particles. Evinacumab is a monoclonal antibody against angiopoietin-like protein 3 (ANGPTL3) and it seems that it can substantially lower elevated TGs levels because ANGPTL3 also regulates TGs metabolism. Pemafibrate is a selective peroxisome proliferator-activated receptor alpha modulator which also decreases TGs, and improves other lipid parameters. It seems that it also has some other possible antiatherogenic effects. Alipogene tiparvovec is a nonreplicating adeno-associated viral vector that delivers copies of the LPL gene to muscle tissue which accelerates the clearance of TG-rich lipoproteins thus decreasing extremely high TGs levels. Pradigastat is a novel diacylglycerol acyltransferase 1 inhibitor which substantially reduces extremely high TGs levels and appears to be promising in treatment of the rare familial chylomicronemia syndrome.

Pharmacologic therapy for nonalcoholic steatohepatitis focusing on pathophysiology

  • Yoon, In Cheol;Eun, Jong Ryeol
    • Journal of Yeungnam Medical Science
    • /
    • 제36권2호
    • /
    • pp.67-77
    • /
    • 2019
  • The paradigm of chronic liver diseases has been shifting. Although hepatitis B and C viral infections are still the main causes of liver cirrhosis and hepatocellular carcinoma (HCC), the introduction of effective antiviral drugs may control or cure them in the near future. In contrast, the burden of nonalcoholic fatty liver disease (NAFLD) has been increasing for decades, and 25 to 30% of the general population in Korea is estimated to have NAFLD. Over 10% of NAFLD patients may have nonalcoholic steatohepatitis (NASH), a severe form of NAFLD. NASH can progress to cirrhosis and HCC. NASH is currently the second leading cause to be placed on the liver transplantation list in the United States. NAFLD is associated with obesity, type 2 diabetes, dyslipidemia, and metabolic syndrome. The pathophysiology is complex and associated with lipotoxicity, inflammatory cytokines, apoptosis, and insulin resistance. The only proven effective treatment is weight reduction by diet and exercise. However, this may not be effective for advanced fibrosis or cirrhosis. Therefore, effective drugs are urgently needed for treating these conditions. Unfortunately, no drugs have been approved for the treatment of NASH. Many pharmaceutical companies are trying to develop new drugs for the treatment of NASH. Some of them are in phase 2 or 3 clinical trials. Here, pharmacologic therapies in clinical trials, as well as the basic principles of drug therapy, will be reviewed, focusing on pathophysiology.

비만세포 매개 즉시형 과민반응에 대한 표고버섯 추출물의 보호 효과 (The Protective Effect of Lentinus Edodes on Mast Cell-Mediated Immediate-Type Hypersensitivity)

  • 연광해;최윤호
    • 생약학회지
    • /
    • 제50권3호
    • /
    • pp.175-184
    • /
    • 2019
  • Mast cells are crucial as effector cells in the immediate-type allergic reaction. Lentinus edodes has been the popular edible mushroom in oriental countries and reported to have immunomodulatory, anti-tumor, anti-atherogenic, anti-viral, and anti-allergic activities. However, the roles of L. edodes in mast cell-mediated anaphylactic reaction have not been fully elucidated. In this research, we have demonstrated the effects of the methanol extract of L. edodes (MELE) on mast cell-mediated anaphylaxis-like and anaphylactic reactions. MELE suppressed systemic anaphylaxis-like reaction, plasma histamine levels, and ear swelling response in mice treated with compound 48/80. MELE also suppressed passive systemic and cutaneous anaphylaxis mediated by anti-dinitrophenyl IgE. In accordance with these findings, MELE dose-dependently decreased histamine release from RPMC evoked by compound 48/80 or the antigen-antibody reaction. To clarify the mechanism of degranulation system, intracellular cAMP levels as well as calcium influx in RPMC was evaluated. In compound 48/80-treated RPMC, MELE blocked calcium uptake into the cells. In addition, MELE elevated the intracellular cAMP content and significantly attenuated compound 48/80-induced cAMP reduction in RPMC. Taken together, we propose the clinical use of MELE in mast cell-mediated immediate-type allergic diseases.

Resistance to Turnip Mosaic Virus in the Family Brassicaceae

  • Palukaitis, Peter;Kim, Su
    • The Plant Pathology Journal
    • /
    • 제37권1호
    • /
    • pp.1-23
    • /
    • 2021
  • Resistance to diseases caused by turnip mosaic virus (TuMV) in crop species of the family Brassicaceae has been studied extensively, especially in members of the genus Brassica. The variation in response observed on resistant and susceptible plants inoculated with different isolates of TuMV is due to a combination of the variation in the plant resistome and the variation in the virus genome. Here, we review the breadth of this variation, both at the level of variation in TuMV sequences, with one eye towards the phylogeny and evolution of the virus, and another eye towards the nature of the various responses observed in susceptible vs. different types of resistance responses. The analyses of the viral genomes allowed comparisons of pathotyped viruses on particular indicator hosts to produce clusters of host types, while the inclusion of phylogeny data and geographic location allowed the formation of the host/geographic cluster groups, the derivation of both of which are presented here. Various studies on resistance determination in particular brassica crops sometimes led to further genetic studies, in many cases to include the mapping of genes, and in some cases to the actual identification of the genes. In addition to summarizing the results from such studies done in brassica crops, as well as in radish and Arabidopsis (the latter as a potential source of candidate genes for brassica and radish), we also summarize work done using nonconventional approaches to obtaining resistance to TuMV.

인유두종바이러스 관련 질환의 예방을 위한 남성 대상 백신의 임상적 유용성 (Clinical Benefit of Vaccinating Male Against HPV-related Disease)

  • 이세영
    • 대한두경부종양학회지
    • /
    • 제38권1호
    • /
    • pp.11-16
    • /
    • 2022
  • HHPV (Human Papillomavirus) is a DNA virus that can cause benign lesions, genitourinary cancer, and oropharyngeal cancer by penetrating the mucous membrane and skin. It is widely known to be transmitted mainly through sexual contact. As with many viral infections, vaccines have been developed to prevent infection with HPV. Currently, in many countries, HPV vaccines are mainly used for national immunization for women to prevent diseases that traditionally occur frequently in women, especially cervical cancer. However, since the vaccination rate is relatively low, many countries are struggling with ways to increase the vaccination rate. Meanwhile, the incidence of oropharyngeal cancer caused by HPV in men has been increasing recently. In the United States, the annual number of oropharyngeal cancers in men already exceeds the number of cervical cancers in women, so HPV infection in men has emerged as a major problem. Accordingly, interest in HPV vaccination in men has also increased, and studies on the effectiveness and necessity of vaccination of both women and men compared to women alone are being actively conducted. In this paper, the evidence of HPV vaccination for men will be reviewed through previous studies, and its validity and cost-effectiveness will be analyzed to bolster the clinical usefulness of HPV vaccination for men.

Rapid detection of deformed wing virus in honeybee using ultra-rapid qPCR and a DNA-chip

  • Kim, Jung-Min;Lim, Su-Jin;Kim, SoMin;Kim, MoonJung;Kim, ByoungHee;Tai, Truong A;Kim, Seonmi;Yoon, ByoungSu
    • Journal of Veterinary Science
    • /
    • 제21권1호
    • /
    • pp.4.1-4.9
    • /
    • 2020
  • Fast and accurate detection of viral RNA pathogens is important in apiculture. A polymerase chain reaction (PCR)-based detection method has been developed, which is simple, specific, and sensitive. In this study, we rapidly (in 1 min) synthesized cDNA from the RNA of deformed wing virus (DWV)-infected bees (Apis mellifera), and then, within 10 min, amplified the target cDNA by ultra-rapid qPCR. The PCR products were hybridized to a DNA-chip for confirmation of target gene specificity. The results of this study suggest that our method might be a useful tool for detecting DWV, as well as for the diagnosis of RNA virus-mediated diseases on-site.

Development and Functions of Alveolar Macrophages

  • Woo, Yeon Duk;Jeong, Dongjin;Chung, Doo Hyun
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.292-300
    • /
    • 2021
  • Macrophages residing in various tissue types are unique in terms of their anatomical locations, ontogenies, developmental pathways, gene expression patterns, and immunological functions. Alveolar macrophages (AMs) reside in the alveolar lumen of the lungs and serve as the first line of defense for the respiratory tract. The immunological functions of AMs are implicated in the pathogenesis of various pulmonary diseases such as allergic asthma, chronic obstructive pulmonary disorder (COPD), pulmonary alveolar proteinosis (PAP), viral infection, and bacterial infection. Thus, the molecular mechanisms driving the development and function of AMs have been extensively investigated. In this review article, we discuss the roles of granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF)-β in AM development, and provide an overview of the anti-inflammatory and pro-inflammatory functions of AMs in various contexts. Notably, we examine the relationships between the metabolic status of AMs and their development processes and functions. We hope that this review will provide new information and insight into AM development and function.

수입산 관상 금붕어(Carassius auratus)의 CyHV-2 감염 증례 (A Case report of Cyprinid Herpesvirus 2(CyHV-2) in Imported Ornamental Goldfish Carassius auratus)

  • 노을빛;진지혜;최희주;김광일;김보성
    • 한국어병학회지
    • /
    • 제35권2호
    • /
    • pp.231-239
    • /
    • 2022
  • In this study, imported ornamental goldfish (Oranda and black moor) with high mortality was investigated with histopathological analysis. Fishes showed clinical symptoms characterized by gill necrosis and cumulative mortality ranging from 60% to 90% within a month after import from Thailand and China in 2021. CyHV-2 was detected in gill, kidney, spleen and liver of goldfishes. Histopathological analysis revealed epithelial necrosis, intranuclear inclusion bodies associated with viral symptoms in epithelial cell, macrophage infiltration and vacuolation in secondary lamella. In addition, disseminated granuloma formation was observed in various organs such as kidney, heart and mesenchymal membranes. These lesions refer to coinfections with CyHV-2 and other pathogens that cause chronic inflammation, which leads to mortality. Therefore, early disease monitoring needs to reduce the mortality when ornamental goldfish is imported.

In silico investigation of Panax ginseng lead compounds against COVID-19 associated platelet activation and thromboembolism

  • Yixian Quah;Yuan Yee Lee;Seung-Jin Lee;Sung Dae Kim;Man Hee Rhee;Seung-Chun Park
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.283-290
    • /
    • 2023
  • Hypercoagulability is frequently observed in patients with severe coronavirus disease-2019 (COVID-19). Platelets are a favorable target for effectively treating hypercoagulability in COVID-19 patients as platelet hyperactivity has also been observed. It is difficult to develop a treatment for COVID-19 that will be effective against all variants and the use of antivirals may not be fully effective against COVID-19 as activated platelets have been detected in patients with COVID-19. Therefore, patients with less severe side effects often turn toward natural remedies. Numerous phytochemicals are being investigated for their potential to treat a variety of illnesses, including cancer and bacterial and viral infections. Natural products have been used to alleviate COVID-19 symptoms. Panax ginseng has potential for managing cardiovascular diseases and could be a treatment for COVID-19 by targeting the coagulation cascade and platelet activation. Using molecular docking, we analyzed the interactions of bioactive chemicals in P. ginseng with important proteins and receptors involved in platelet activation. Furthermore, the SwissADME online tool was used to calculate the pharmacokinetics and drug-likeness properties of the lead compounds of P. ginseng. Dianthramine, deoxyharrtingtonine, and suchilactone were determined to have favorable pharmacokinetic profiles.