• Title/Summary/Keyword: viral activity

Search Result 364, Processing Time 0.023 seconds

Characterization of the Functional Domains of Human Foamy Virus Integrase Using Chimeric Integrases

  • Lee, Hak Sung;Kang, Seung Yi;Shin, Cha-Gyun
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.246-255
    • /
    • 2005
  • Retroviral integrases insert viral DNA into target DNA. In this process they recognize their own DNA specifically via functional domains. In order to analyze these functional domains, we constructed six chimeric integrases by swapping domains between HIV-1 and HFV integrases, and two point mutants of HFV integrase. Chimeric integrases with the central domain of HIV-1 integrase had strand transfer and disintegration activities, in agreement with the idea that the central domain determines viral DNA specificity and has catalytic activity. On the other hand, chimeric integrases with the central domain of HFV integrase did not have any enzymatic activity apart from FFH that had weak disintegration activity, suggesting that the central domain of HFV integrase was defective catalytically or structurally. However, these inactive chimeras were efficiently complemented by the point mutants (D164A and E200A) of HFV integrase, indicating that the central domain of HFV integrase possesses potential enzymatic activity but is not able to recognize viral or target DNA without the help of its homologous N-terminal and C-terminal domains.

Preparation of Trifluoroacetyl Chitosan Derivatives with Antiviral Activity (항바이러스 활성을 갖는 Trifluoroacetyl Chitosan 유도체의 제조)

  • Kim, Chun-Ho;Shin, Cha-Gyun;Shin, Kye-Sook;Son, Tae-il
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.599-602
    • /
    • 1999
  • Chitosan was depolymerized by using nitrous acid. In order to synthesize new fluorinated chitosan oligomer(FCO) derivative, free amine groups of resulting low molucular weight chitosan oligomers were reacted with trifluoroacetic anhydride. The structure changes in the samples were conformed by using FT-IR, $^{1}H\;NMR$, $^{13}C\;NMR$ and $^{19}F\{^{1}H\}NMR$. Antiviral activity of FCO was studied by measuring DAN amounts of the replication viruses at 36 hr after the cells were infected with the viral solution containing FCO of various concentrations. The viral replications in the cells infected with the viral solution containing FCO were proportionally decreased with the FCO does, compared to those of the control groups, indicating that FCO efficiently inhibits viral infection. In particular, viral replication was decreased to 40% in the 1% FCO-treated cells.

  • PDF

Antiviral Activity of the Plant Extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii Against Influenza Virus A/PR/8/34

  • Won, Ji-Na;Lee, Seo-Yong;Song, Dae-Sub;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.125-130
    • /
    • 2013
  • Influenza viruses cause significant morbidity and mortality in humans through epidemics or pandemics. Currently, two classes of anti-influenza virus drugs, M2 ion-channel inhibitors (amantadin and rimantadine) and neuraminidase inhibitors (oseltamivir and zanamivir), have been used for the treatment of the influenza virus infection. Since the resistance to these drugs has been reported, the development of a new antiviral agent is necessary. In this study, we examined the antiviral efficacy of the plant extracts against the influenza A/PR/8/34 infection. In vitro, the antiviral activities of the plant extracts were investigated using the cell-based screening. Three plant extracts, Thuja orientalis, Aster spathulifolius, and Pinus thunbergii, were shown to induce a high cell viability rate after the infection with the influenza A/PR/8/34 virus. The antiviral activity of the plant extracts also increased as a function of the concentration of the extracts and these extracts significantly reduced the visible cytopathic effect caused by virus infections. Furthermore, the treatment with T. orientalis was shown to have a stronger inhibitory effect than that with A. spathulifolius or P. thunbergii. These results may suggest that T. orientalis has anti-influenza A/PR/8/34 activity.

The Adenylyl Cyclase Activator Forskolin Increases Influenza Virus Propagation in MDCK Cells by Regulating ERK1/2 Activity

  • Sang-Yeon Lee;Jisun Lee;Hye-Lim Park;Yong-Wook Park;Hun Kim;Jae-Hwan Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1576-1586
    • /
    • 2023
  • Vaccination is the most effective method for preventing the spread of the influenza virus. Cell-based influenza vaccines have been developed to overcome the disadvantages of egg-based vaccines and their production efficiency has been previously discussed. In this study, we investigated whether treatment with forskolin (FSK), an adenylyl cyclase activator, affected the output of a cell-based influenza vaccine. We found that FSK increased the propagation of three influenza virus subtypes (A/H1N1/California/4/09, A/H3N2/Mississippi/1/85, and B/Shandong/7/97) in Madin-Darby canine kidney (MDCK) cells. Interestingly, FSK suppressed the growth of MDCK cells. This effect could be a result of protein kinase A (PKA)-Src axis activation, which downregulates extracellular signal-regulated kinase (ERK)1/2 activity and delays cell cycle progression from G1 to S. This delay in cell growth might benefit the binding and entry of the influenza virus in the early stages of viral replication. In contrast, FSK dramatically upregulated ERK1/2 activity via the cAMP-PKA-Raf-1 axis at a late stage of viral replication. Thus, increased ERK1/2 activity might contribute to increased viral ribonucleoprotein export and influenza virus propagation. The increase in viral titer induced by FSK could be explained by the action of cAMP in assisting the entry and binding of the influenza virus. Therefore, FSK addition to cell culture systems could help increase the production efficiency of cell-based vaccines against the influenza virus.

The Combined Anti-apoptotic Effect from Tamiflu and Pinoresinol of Forsythia fructus Extract Against Influenza Virus Infection (연교 추출물 Pinoresinol와 Tamiflu의 병용효과로부터 Influenza Virus 감염에 의한 세포사멸 억제효과)

  • Kim, Sang-Tae;Kim, Jang-Soo;Choe, Young-Uung;Kim, Young-Kyoon
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • The fruit body of Forsythiae Fructus (Oleaceae), a common Korean medical herb, is widely used in the treatment of cold and inflammation. In order to elucidate the action mechanism and the active principles from the plant against anti-influenza virus, the influenza virus hemagglutinin (HA) and neuraminidase (NA) gene RT-PCR and Viral Screening & Identification (VSI) assay were conducted, and the activity against viral replication was also investigated. Consequently, one active constituent, namely pinoresinol showed the in vitro antiviral principle using a cytopathic effect (CPE) reduction method, indicating pinoresinol possessed anti-influenza viral activity. Furthermore, combination of pinoresinol and Tamiflu exhibited higher activities than Tamiflu alone against influenza virus (H3N2) infection. The results suggested that combination of pinoresinol with Tamiflu could be a better candidate for an ant-H3N2 viral agent in the treatment of the influenza.

Reovirus and Tumor Oncolysis

  • Kim, Man-Bok;Chung, Young-Hwa;Johnston, Randal N.
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.187-192
    • /
    • 2007
  • REOviruses (Respiratory Enteric Orphan viruses) are ubiquitous, non-enveloped viruses containing 10 segments of double-stranded RNA (dsRNA) as their genome. They are common isolates of the respiratory and gastrointestinal tract of humans but are not associated with severe disease and are therefore considered relatively benign. An intriguing characteristic of reovirus is its innate oncolytic potential, which is linked to the transformed state of the cell. When immortalized cells are transfected in vitro with activated oncogenes such as Ras, Sos, v-erbB, or c-myc, they became susceptible to reovirus infection and subsequent cellular lysis, indicating that oncogene signaling pathways are exploited by reovirus. This observation has led to the use of the virus in clinical trials as an anti-cancer agent against oncogenic tumors. In addition to the exploitation of oncogene signaling, reovirus may further utilize host immune responses to enhance its antitumor activity in vivo due to its innate interferon induction ability. Reovirus is, however, not entirely benign to immunocompromised animal models. Reovirus causes so-called "black feet syndrome" in immunodeficient mice and can also harm neonatal animals. Because cancer patients often undergo immunosuppression due to heavy chemo/radiation-treatments or advanced tumor progression, this pathogenic response may be a hurdle in virus-based anticancer therapies. However, a genetically attenuated reovirus variant derived from persistent reovirus infection of cells in vitro is able to exert potent anti-tumor activity with significantly reduced viral pathogenesis in immunocompromised animals. Importantly, in this instance the attenuated, reovirus maintains its oncolytic potential while significantly reducing viral pathogenesis in vivo.

Anti-Viral Hemorrhagic Septicemia Virus (VHSV) Activity of 3-Methyl Catechol (바이러스성출혈성패혈증 바이러스 감염에 대한 3-Methyl Catechol의 항바이러스성 활성)

  • Cho, Se-Young;Min, Na-Rae;Kim, Young O;Kim, Duwoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.644-651
    • /
    • 2021
  • Viral hemorrhagic septicemia virus (VHSV) is a fish pathogen responsible for causing enormous economic loss to the aquaculture industry not only in Korea but worldwide. Thus, it is necessary to identify natural compounds that can be used to control the spread of VHSV. In this study, the anti-VHSV activities of five catechol derivatives, i.e., catechol, pyrogallol, 3-methyl catechol, veratrole, and 3-methyl veratrole-extracted from green tea-were assessed. The antiviral activities of these derivatives were found to be dependent on their structure, i.e., the hydroxyl or methoxyl group and their substituent groups-on the benzene ring. Catechol, pyrogallol, and 3-methyl catechol exhibited relatively high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities than veratrole, and 3-methyl veratrole. Moreover, 3-methyl catechol harboring a methyl substituent group increased the viability of the virus-infected cells and resulted in a 2.86 log reduction in the gene copies of VHSV N (per mL) in real-time PCR analysis. In conclusion, the catechol derivatives harboring hydroxyl groups in their benzene ring exhibited higher antioxidant activities than those harboring the methoxyl groups. However, catechol derivatives with a methyl group at the 3'-position of the benzene ring exhibited higher antiviral activity than those harboring a hydroxyl group. To our knowledge, this is the first study to evaluate the relationship between the structure and the anti-VHSV activity of catechol derivatives.

Identification of anti-HIV and anti-Reverse Transcriptase activity from Tetracera scandens

  • Kwon, Hyeok-Sang;Park, Jung-Ae;Kim, Joo-Hwan;You, Ji-Chang
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.165-170
    • /
    • 2012
  • We report here that an ethanol extract of Tetracera scandens, a Vietnamese medicinal plant, has anti-HIV activity and possesses strong inhibitory activity against HIV-1 reverse transcriptase (RTase). Using a MT-4 cell-based assay, we found that the T. scandens extract inhibited effectively HIV virus replication with an $IC_{50}$ value in the range of 2.0-2.5 ${\mu}g$/ml while the cellular toxicity value (CC50) was more than 40-50 ${\mu}g$/ml concentration, thus yielding a minimum specificity index of 20-fold. Moreover, the anti-HIV efficacy of the T. scandens extract was determined to be due, in part, to its potent inhibitory activity against HIV-1 RTase activity in vitro. The inhibitory activity against the RTase was further confirmed by probing viral cDNA production, an intermediate of viral reverse transcription, in virus-infected cells using quantitative DNA-PCR analysis. Thus, these results suggest that T. scandens can be a useful source for the isolation and development of new anti-HIV-1 inhibitor(s).

Effect of Chemical Carcinogens on the Replication, Cytolyticity, DNA Synthesis, and Protein Expression of Herpes Simplex Virus in Viral Infected Cells (발암성 화학물질들이 Herpes Simplex Virus의 복제, 세포융해, DNA 합성 및 단백질 합성에 미치는 효과)

  • Chun, Yeon-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.213-222
    • /
    • 1992
  • We investigated effects of several chemical carcinogens, i.e., $benzo({\alpha})pyrene$ (BP),7,12-dimethylbenz(a)anthracene (DMBA), nitrosomethyl urea (NMU), and nicotine on the replication, cytolyticity, DNA synthesis, and protein synthesis of type 1 herpes simplex virus (HSV-1) in viral infected Vero cell monolayers. We observed that the BP and DMBA did not show such activity. All chemical carcinogens did not inhibit the synthesis of viral DNA, but the expression of gamma viral proteins that are expressed from the newly synthesized progeny viral DNA was somewhat notably inhibited by BP and DMBA. However, the synthesis of alpha and beta viral proteins was not altered by the chemical carcinogens. These data indicate that the gamma viral proteins expressed from the newly synthesized DNA in the presence of chemical carcinogens in the culture medium may be defective. This is further supported by the fact that the virus fail to replicate in the presence of these chemical carcinogens, in spite of viral DNA and proteins are somewhat normally synthesized.

  • PDF

Isolation and identification of mammalian orthoreovirus type 3 from a Korean roe deer (Capreolus pygargus)

  • Yang, Dong-Kun;An, Sungjun;Park, Yeseul;Yoo, Jae Young;Park, Yu-Ri;Park, Jungwon;Kim, Jong-Taek;Ahn, Sangjin;Hyun, Bang-Hun
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.2
    • /
    • pp.13.1-13.8
    • /
    • 2021
  • Mammalian reovirus (MRV) causes respiratory and intestinal disease in mammals. Although MRV isolates have been reported to circulate in several animals, there are no reports on Korean MRV isolates from wildlife. We investigated the biological and molecular characteristics of Korean MRV isolates based on the nucleotide sequence of the segment 1 gene. In total, 144 swabs from wild animals were prepared for virus isolation. Based on virus isolation with specific cytopathic effects, indirect fluorescence assays, electron microscopy, and reverse transcription-polymerase chain reaction, only one isolate was confirmed to be MRV from a Korean roe deer (Capreolus pygargus). The isolate exhibited a hemagglutination activity level of 16 units with pig erythrocytes and had a maximum viral titer of 105.7 50% tissue culture infectious dose (TCID50)/mL in Vero cells at 5 days after inoculation. The nucleotide and amino-acid sequences of the partial segment S1 of the MReo2045 isolate were determined and compared with those of other MRV strains. The MReo2045 isolate had nucleotide sequences similar to MRV-3 and was most similar (96.1%) to the T3/Bat/Germany/342/08 strain, which was isolated in Germany in 2008. The MReo2045 isolate will be useful as an antigen for sero-epidemiological studies and developing diagnostic tools.