• 제목/요약/키워드: videos

검색결과 1,555건 처리시간 0.023초

고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로 (Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page)

  • 전수현;곽기영
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.57-79
    • /
    • 2016
  • 최근 소셜 네트워크 서비스는 소비자와의 관계 마케팅 확산 및 확장을 위한 중요한 채널로 인식되며 많은 관심을 받고 있다. 기업이 온라인 환경에서 성공하기 위해서는 기업과 고객 사이의 관계 구축뿐만 아니라 고객들 간의 관계에 초점을 맞출 필요가 있다. 본 연구에서는 페이스북 팬 페이지에 참여하는 사용자들 사이의 네트워크를 분석하여 기업의 비즈니스 성과에 고객 간 네트워크의 구조적 특성이 미치는 영향을 실증적으로 분석하였다. 이를 위해 네트워크 데이터는 코스피 상장 기업 가운데 페이스북 팬 페이지에 100개 이상의 게시글을 올린 54개 기업으로부터 수집하였으며, 수집된 네트워크 데이터는 각 사용자를 노드로 하고 동일한 마케팅 활동에 대해 참여한 사용자간의 관계를 링크로 한 원모드 비방향 이진 네트워크(one-mode undirected binary network)이다. 본 연구에서는 이러한 네트워크 데이터를 핸들링하여 사용자들 간의 활동 관계를 분석할 수 있는 네트워크 지표(밀도, 글로벌 클러스터링 계수, 최단거리평균, 직경)를 도출하였으며, 이러한 고객 간 네트워크의 구조적 특징을 파악할 수 있는 지표와 기업의 과거실적(순이익), 그리고 미래 예측성과(토빈의 Q) 간의 관계를 분석하였다. 본 연구는 학문적 관점에서 소셜 미디어 채널을 비즈니스 관점에서 연구하려는 연구자들에게 소셜네트워크분석 방법을 통한 새로운 접근법을 제시한다. 실무적인 관점에서 본 연구는 소셜미디어를 통해 마케팅 활동을 수행하려는 기업의 관리자들에게 네트워크의 지표를 이용한 지능형 마케팅 서비스를 수행할 수 있는 토대를 제공할 것으로 기대한다.

효율적 자원 탐색을 위한 소셜 웹 태그들을 이용한 동적 가상 온톨로지 생성 연구 (Dynamic Virtual Ontology using Tags with Semantic Relationship on Social-web to Support Effective Search)

  • 이현정;손미애
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.19-33
    • /
    • 2013
  • 본 논문에서는 네트워크 기반 대용량의 자원들을 효율적으로 검색하기 위해 사용자의 요구사항에 기반해 검색에 요구되는 태그들 간의 의미론에 기반한 동적 가상 온톨로지(Dynamic Virtual Ontology using Tags: DyVOT)를 추출하고 이를 이용한 동적 검색 방법론을 제안한다. 태그는 소셜 네트워크 서비스를 지원하거나 이로부터 생성되는 정형 및 비정형의 다양한 자원들에 대한 자원을 대표하는 특성을 포함하는 메타적 정보들로 구성된다. 따라서 본 연구에서는 이러한 태그들을 이용해 자원의 관계를 정의하고 이를 검색 등에 활용하고자 한다. 관계 등의 정의를 위해 태그들의 속성을 정의하는 것이 요구되며, 이를 위해 태그에 연결된 자원들을 이용하였다. 즉, 태그가 어떠한 자원들을 대표하고 있는 지를 추출하여 태그의 성격을 정의하고자 하였고, 태그를 포함하는 자원들이 무엇인지에 의해 태그간의 의미론적인 관계의 설정도 가능하다고 보았다. 즉, 본 연구에서 제안하는 검색 등의 활용을 목적으로 하는 DyVOT는 태그에 연결된 자원에 근거해 태그들 간의 의미론적 관계를 추출하고 이에 기반 하여 가상 동적 온톨로지를 추출한다. 생성된 DyVOT는 대용량의 데이터 처리를 위해 대표적인 예로 검색에 활용될 수 있으며, 태그들 간의 의미적 관계에 기반해 검색 자원의 뷰를 효과적으로 좁혀나가 효율적으로 자원을 탐색하는 것을 가능하도록 한다. 이를 위해 태그들 간의 상하 계층관계가 이미 정의된 시맨틱 태그 클라우드인 정적 온톨로지를 이용한다. 이에 더해, 태그들 간의 연관관계를 정의하고 이에 동적으로 온톨로지를 정의하여 자원 검색을 위한 동적 가상 온톨로지 DyVOT를 생성한다. DyVOT 생성은 먼저 정적온톨로지로부터 사용자 요구사항을 포함하는 태그를 포함한 부분-온톨로지들을 추출하고, 이들이 공유하는 자원의 정도에 따라 부분-온톨로지들 간의 새로운 연관관계 여부를 결정하여 검색에 요구되는 최소한의 동적 가상 온톨로지를 구축한다. 즉, 태그들이 공유하는 자원이 무엇인가에 의해 연관관계가 높은 태그들 간에는 이들의 관계를 설명하는 새로운 클래스를 가진 생성된 동적 가상 온톨로지를 이용하여 검색에 활용한다. 온톨로지의 인스턴스는 자원으로 정의되고, 즉 이는 사용자가 검색하고자 하는 해로서 정의된다. 태그들 간의 관계에 의해 생성된 DyVOT를 이용해 기존 정적 온톨로지나 키워드 기반 탐색에 비해 검색해야 할 자원의 량을 줄여 검색의 정확성과 신속성을 향상 시킨다.

정신분석학적 '욕망의 주체' 이해에 기초한 사랑의 교육 교육과정 개발 (A Study on Practical Curriculum Development of the Education for Love based on the Understanding of Psychoanalytic 'Desire of Subject')

  • 김선아
    • 기독교교육논총
    • /
    • 제68권
    • /
    • pp.77-112
    • /
    • 2021
  • 본 연구에서는 돌토의 정신분석학적 관점을 중심으로 사랑의 교육 교육과정을 두 가지 영역에서 재구성하여 제시한다. 그 첫 번째 영역은 '사랑의 교육 교육과정의 방향 및 이에 따른 세부목적'이다. 이 영역에서 연구자는 사랑의 교육 교육과정의 방향을 '주체상호적인 사랑의 소통을 위한 사랑의 교육 교육과정'과 '욕망의 주체를 위한 사랑의 교육 교육과정'으로 재구성하여 제시한다. 사랑의 교육 교육과정의 방향에 따른 세부목적은 '말하는 존재로서의 주체 구성하기'와 '욕망의 자율적 원천으로서의 주체 깨닫기'로 재구성하여 제시한다. 사랑의 교육 교육과정의 방향 및 이에 따른 세부목적을 재구성하는 목표는 우리의 미래세대가 주체상호적인 사랑의 소통을 이루며 사랑을 욕망하는 주체로서 살아가도록 길인도 하고자 하는 데 있다. 두 번째 영역은 '사랑의 교육 교육과정의 과제 및 이에 따른 세부내용'이다. 이 영역에서 연구자는 사랑의 교육 교육과정의 과제를 '아가페적 사랑의 욕망 패러다임으로 전환하기'와 '사랑의 교육과정을 통해 전인성 형성하기'로 재구성하여 제시한다. 이에 따른 사랑의 교육 교육과정의 세부내용은 '아가페적 사랑의 욕망의 진실 깨닫기'와 '일상의 삶에서 아가페적 사랑 실천하기'로 재구성하여 제시한다. 사랑의 교육 교육과정 과제 및 세부내용의 재구성 목표는 우리의 미래세대가 아가페적 사랑의 욕망 패러다임으로 전환한 사랑의 교육 교육과정을 통해 일상의 삶에서 아가페적 사랑을 실천하며 사는 전인적 '욕망의 주체'가 되도록 길인도 하는 데 있다. 이에 더 나아가, 본 연구에서는 생애주기별(태아기, 영유아기, 아동기)로 돌토의 정신분석학적 관점에서 사랑의 교육 교육과정을 재구성한 실제를 제시한다. 결론에서는, 이와 같은 연구결과물이 현장에서 활용되기 위해 요구되는 교육적 실천을 제안하고, 본 연구 결과물의 후속 연구를 위한 제언 및 전망을 함으로써 본 연구의 여정을 마무리 한다.

영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법 (Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation)

  • 유띳로따낙;누르지드;하인애;조근식
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.57-77
    • /
    • 2013
  • 소셜 미디어는 모바일 어플리케이션과 웹에서 가장 많이 사용되는 미디어 중 하나이다. Nielsen사의 보고서에 따르면 소셜 네트워크 서비스와 블로그가 온라인 사용자의 주 활동 공간으로 사용되고 있으며, 미국인 중에서 온라인 활동이 왕성한 5명의 사용자중 4명은 매일 소셜 네트워크 서비스와 블로그를 방문하고 온라인 활동 시간의 23%를 소비한다고 집계하고 있다. 미국의 인터넷 사용자들은 야후, 구글, AOL 미디어 네트워크, 트위터, 링크드인 등과 같은 소셜 네트워크 서비스중 페이스북에서 가장 많은 시간을 소비한다. 최근에는 대부분의 회사들이 자신의 특정 상품에 대하여 "페이스북 페이지(Facebook Page)"를 생성하고 상품에 대한 프로모션을 진행한다. 페이스북에서 제공되는 "좋아요" 옵션은 페이스북 페이지를 통해 자신이 관심을 가지는 상품(아이템)을 표시하고 그 상품을 지지할 수 있도록 한다. 많은 영화를 제작하는 영화 제작사들도 페이스북 페이지와 "좋아요" 옵션을 이용하여 영화 프로모션과 마케팅에 이용한다. 일반적으로 다수의 스트리밍 서비스 제공업들도 영화와 TV 프로그램을 즐기며 볼 수 있는 서비스를 사용자들에게 제공한다. 이 서비스는 일반 컴퓨터와 TV 등의 단말기에서인터넷을 통해 영화와 TV 프로그램을 즉각적으로 제공할 수 있다. 스트리밍 서비스의 선두 주자인 넷플릭스는 미국, 라틴 아메리카, 영국 그리고 북유럽 국가 등에 3천만 명 이상의 스트리밍 사용자가 가입되어 있다. 또한 넥플릭스는 다양한 장르로 구성된 수백만 개의 영화와 TV 프로그램을 보유하고 있다. 하지만 수많은 콘텐츠로 인해 사용자들은 자신이 선호하는 장르에 관련된 영화와 TV 프로그램을 찾기 위해 많은 시간을 소비해야 된다. 많은 연구자들이 이러한 사용자의 불편함을 줄이기 위해 아이템에 대한 사용자가 보지 않은 아이템에 대한 선호도를 예측하고 높은 예측값을 갖는 아이템을 사용자에게 제공하기 위한 추천 시스템을 적용하였다. 협업적 여과 방법은 추천 시스템을 구축하기 위해 가장 많이 사용되는 방법이다. 협업적 여과 시스템은 사용자들이 평가한 아이템을 기반으로 각 사용자 간의 유사도를 측정하고 목적 사용자와 유사한 성향을 가진 사용자 그룹을 결정한다. 군집된 그룹은 이웃 사용자 집단으로 불리며 이를 이용하여 특정 아이템에 대한 선호도를 예측하고, 예측 값이 높은 아이템을 목적 사용자에게 추천해 준다. 협업적 여과 방법이 적용되는 분야는 서적, 음악, 영화, 뉴스 및 비디오 등 다양하지만 논문에서는 영화에 초점을 맞춘다. 이 협업적 여과 방법이 추천 시스템 내에서 유용하게 활용되고 있지만 아직 "희박성 문제"와 "콜드 스타트 문제" 등 해결해야 할 과제가 남아있다. 희박성 문제는 아이템의 수가 증가할수록 아이템에 대한 사용자의 로그 밀도가 감소하는 것이다. 즉, 전체 아이템 수에 비해 사용자가 아이템에 대해 평가한 정보가 충분하지 않기 때문에 사용자의 성향을 파악하기 어렵고, 이로 인해 사용자가 아직 평가하지 않은 아이템에 대해서 선호도를 추측하기 어려운 것을 말한다. 이 희박성 문제가 포함된 경우 적합한 이웃 사용자 집단을 형성하는데 어려움을 겪게 되고 사용자들에게 제공되는 아이템 추천의 질이 떨어지게 된다. 콜드 스타트 문제는 시스템 내에 새로 들어온 사용자 또는 아이템으로 지금까지 한 번도 평가를 하지 않은 경우에 발생한다. 즉, 사용자가 평가한 아이템에 대한 정보가 전혀 포함되어 있지 않거나 매우 적기 때문에 이러한 경우 또한 적합한 이웃 사용자 집단을 형성하는데 어려움을 겪게 되고 사용자가 평가하지 않은 아이템에 대한 선호도 예측의 정확성이 감소되게 된다. 본 논문에서는 영화 추천 시스템에서 발생될 수 있는 초기 사용자 문제를 해결하기 위하여 사용자가 평가한 영화와 소셜 네트워크 서비스로부터 추출된 사용자 선호 장르를 활용하여 사용자 군집을 형성하고 이를 활용하는 방법을 제안한다. 소셜 네트워크 서비스로부터 사용자가 선호하는 영화 장르를 추출하기 위해 페이스북 페이지의 '좋아요' 옵션을 이용하며, 이 '좋아요' 정보를 분석하여 사용자의 영화 장르 관심사를 추출한다. 페이스북의 영화 페이지는 각 영화를 위한 페이스북 페이지로 구성되고 있으며, 사용자는 자신의 선호도에 따라서 "좋아요" 옵션을 선택할 수 있다. 사용자의 페이스북 정보는 페이스북 그래프 API를 활용하여 추출되고 이로부터 사용자 선호 영화를 알 수 있게 된다. 시스템에서 활용되는 영화 정보는 인터넷 영화 데이터베이스인 IMDb로부터 획득한다. IMDb는 수많은 영화와 TV 프로그램을 보유하고 있으며, 각 영화에 관련된 배우 정보, 장르 및 부가 정보들을 포함한다. 논문에서는 사용자가 "좋아요" 표시를 한 영화 페이지를 이용하여 IMDb로부터 영화 장르 정보를 가져온다. 그리고 추출된 영화 장르 선호도와 본 시스템에서 제안하는 영화 평가 항목을 이용하여 유사한 이웃 사용자 집단을 구성한 후, 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고, 높은 예측 값을 갖는 아이템을 사용자에게 추천한다. 본 논문에서 제안한 사용자의 선호 장르 기반의 사용자 군집 기법을 이용한 시스템을 평가하기 위해서 IMDb 데이터 집합을 이용하여 사용자 영화 평가 시스템을 구축하였고 참가자들의 영화 평가 정보를 획득하였다. 페이스북 영화 페이지 정보는 참가자들의 페이스북 계정과 페이스북 그래프 API를 통해 획득하였다. 사용자 영화 평가 시스템을 통해 획득된 사용자 데이터를 제안하는 방법에 적용하였고 추천 성능, 품질 및 초기 사용자 문제를 벤치마크 알고리즘과 비교하여 평가하였다. 실험 평가의 결과 제안하는 방법을 적용한 추천 시스템을 통해 추천의 품질을 10% 향상시킬 수 있었고, 초기 사용자 문제에 대해서 15% 완화시킬 수 있음을 볼 수 있었다.

기술 준비도와 소비자 준비도가 Self Service Technology 사용동기와 태도 및 사용의도에 미치는 영향 (Effects of TR and Consumer Readiness on SST Usage Motivation, Attitude and Intention)

  • 심현숙;한상린
    • Asia Marketing Journal
    • /
    • 제14권1호
    • /
    • pp.25-51
    • /
    • 2012
  • 정보기술의 활용이 마케팅 전략의 중요한 부분으로 부각되는 시장 환경에서 본 논문에서는 패스트푸드 레스토랑에서 주문시 Self Service Technology(SST)를 사용 할 때 기술준비도와 소비자 준비도에 따른 사용동기, 태도, 사용의도의 차이를 검증하고자 하였다. Parasuraman이 TRI를 개발한 이후 SST와 TRI를 접목한 연구가 이루어져 왔지만 여전히 부족한 실정이다. 소비자 준비도 역시 SST사용에 대한 소비자의 동기와 태도 및 의도와 직접적인 영향을 미칠 수 있지만 이에 대한 연구는 이루어지지 않았다. 이에 본 연구에서는 패스트푸드 레스토랑에서 터치스크린 SST를 도입함에 있어 소비자의 기술준비도와 소비자 준비도가 Dabholkar & Bagozzi(1994)가 제안한 SST 핵심태도모델에 미치는 영향을 고찰하였다. 이때 모든 소비자와 상황적 요인에 따른 차이를 파악하고자 자아의식, 상호작용욕구, 기술에 대한 두려움 등의 소비자특성과 지각된 대기시간, 지각된 과밀 등의 상황적 요인에 따른 조절 효과를 검증하였다. AMOS 18.0프로그램을 사용하여 구조방정식 모델로 분석하였고 연구 결과 기술준비도 중 낙관성은 사용용이성과 재미 동기에 유의한 영향을 미치는 것으로 나타났다. 혁신성은 사용용이성과 성과에 유의한 영향을 미치는 것으로 나타났다. 역할의 명확성, 능력 및 자아 효능감으로 구성된 소비자준비도는 사용용이성, 성과와 재미 등 모든 SST사용동기 요소에 기술준비도보다 강하고 유의한 영향을 미치는 것으로 나타났다. 마지막으로 SST 핵심태도모델 내의 SST 사용 동기, 사용 태도 및 사용의도 간의 관계에서 소비자 특성과 상황적 요인의 조절효과를 검증한 결과 지각된 과밀을 제외한 모든 변수들이 조절효과를 지니는 것으로 나타났다. 이러한 연구 결과를 바탕으로 터치스크린 SST를 도입하려는 기업에 실무적 제언을 하였다.

  • PDF