• 제목/요약/키워드: video-surveillance

검색결과 490건 처리시간 0.025초

SUPER RESOLUTION RECONSTRUCTION FROM IMAGE SEQUENCE

  • Park Jae-Min;Kim Byung-Guk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.197-200
    • /
    • 2005
  • Super resolution image reconstruction method refers to image processing algorithms that produce a high resolution(HR) image from observed several low resolution(LR) images of the same scene. This method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, such as satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. In this paper we applied super resolution reconstruction method in spatial domain to video sequences. Test images are adjacently sampled images from continuous video sequences and overlapped for high rate. We constructed the observation model between the HR images and LR images applied by the Maximum A Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from low resolution images and compared the results with those from other known interpolation methods.

  • PDF

Video on Demand 서비스를 위한 MPEG-4 시스템 구현 (Implementation of MPEG-4 System for Video on Demand Services)

  • 최승철;김남규;최석림
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(1)
    • /
    • pp.225-228
    • /
    • 2001
  • We describe the implementation of MPEG-4 Systems for Video on Demand services. We discuss the issues in implementint MPEG-4 Systems, specially Object Description and Elementary stream management(Buffer control, Synchronization). The file-server pump the multiplexed streams to the client through the DMIF. Interaction between server and client is done with User Command(play, pause, stop, fast foward, ...). Stream data are multiplexed off-line. In advance, the file-server read multiplexed streams and pumps it to MPEG-4 terminal(client). Our system can be used in various application not only Video on Demand services, but also Internet broadcasting, remote surveillance, mobile communication, remote education, etc.

  • PDF

실시간 영상 안정화를 위한 키프레임과 관심영역 선정 (Adaptive Keyframe and ROI selection for Real-time Video Stabilization)

  • 배주한;황영배;최병호;전재열
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 추계학술대회
    • /
    • pp.288-291
    • /
    • 2011
  • Video stabilization is an important image enhancement widely used in surveillance system in order to improve recognition performance. Most previous methods calculate inter-frame homography to estimate global motion. These methods are relatively slow and suffer from significant depth variations or multiple moving object. In this paper, we propose a fast and practical approach for video stabilization that selects the most reliable key frame as a reference frame to a current frame. We use optical flow to estimate global motion within an adaptively selected region of interest in static camera environment. Optimal global motion is found by probabilistic voting in the space of optical flow. Experiments show that our method can perform real-time video stabilization validated by stabilized images and remarkable reduction of mean color difference between stabilized frames.

  • PDF

A Study of Video-Based Abnormal Behavior Recognition Model Using Deep Learning

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.115-119
    • /
    • 2020
  • Recently, CCTV installations are rapidly increasing in the public and private sectors to prevent various crimes. In accordance with the increasing number of CCTVs, video-based abnormal behavior detection in control systems is one of the key technologies for safety. This is because it is difficult for the surveillance personnel who control multiple CCTVs to manually monitor all abnormal behaviors in the video. In order to solve this problem, research to recognize abnormal behavior using deep learning is being actively conducted. In this paper, we propose a model for detecting abnormal behavior based on the deep learning model that is currently widely used. Based on the abnormal behavior video data provided by AI Hub, we performed a comparative experiment to detect anomalous behavior through violence learning and fainting in videos using 2D CNN-LSTM, 3D CNN, and I3D models. We hope that the experimental results of this abnormal behavior learning model will be helpful in developing intelligent CCTV.

감시 카메라와 RFID를 활용한 다수 객체 추적 및 식별 시스템 (Multiple Object Tracking and Identification System Using CCTV and RFID)

  • 김진아;문남미
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권2호
    • /
    • pp.51-58
    • /
    • 2017
  • 안전과 보안상의 이유로 감시 카메라의 시장이 확대되고 있으며 이에 대해 영상 인식 및 추적에 관한 연구도 활발히 진행 중에 있으나 인식 및 추적되는 객체의 정보를 획득하여 객체를 식별하는 데는 한계가 있다. 특히, 감시카메라가 활용되는 쇼핑몰, 공항 등과 같은 개방된 공간에서는 다수의 객체들을 식별하기란 더욱 어렵다. 따라서 본 논문에서는 기존의 영상기반 객체 인식 및 추적 시스템에 RFID 기술을 더하여 객체 식별기능을 추가하고자 하였으며 영상 기반과 RFID의 문제 해결을 위해 상호 보완하고자 하였다. 그리하여 시스템의 모듈별 상호작용을 통해 영상기반 객체 인식 및 추적에 실패할 수 있는 문제와 RFID의 인식 오류로 발생할 수 있는 문제에 대한 해결 방안을 제시하였다. 객체의 식별 정도를 4단계로 분류하여 가장 최상의 단계로 객체가 식별이 되도록 시스템을 설계해 식별된 객체의 데이터 신뢰성을 유지할 수 있도록 하였다. 시스템의 효율성 판단을 위해 시뮬레이션 프로그램을 구현하여 이를 입증하였다.

Abnormal Behavior Recognition Based on Spatio-temporal Context

  • Yang, Yuanfeng;Li, Lin;Liu, Zhaobin;Liu, Gang
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.612-628
    • /
    • 2020
  • This paper presents a new approach for detecting abnormal behaviors in complex surveillance scenes where anomalies are subtle and difficult to distinguish due to the intricate correlations among multiple objects' behaviors. Specifically, a cascaded probabilistic topic model was put forward for learning the spatial context of local behavior and the temporal context of global behavior in two different stages. In the first stage of topic modeling, unlike the existing approaches using either optical flows or complete trajectories, spatio-temporal correlations between the trajectory fragments in video clips were modeled by the latent Dirichlet allocation (LDA) topic model based on Markov random fields to obtain the spatial context of local behavior in each video clip. The local behavior topic categories were then obtained by exploiting the spectral clustering algorithm. Based on the construction of a dictionary through the process of local behavior topic clustering, the second phase of the LDA topic model learns the correlations of global behaviors and temporal context. In particular, an abnormal behavior recognition method was developed based on the learned spatio-temporal context of behaviors. The specific identification method adopts a top-down strategy and consists of two stages: anomaly recognition of video clip and anomalous behavior recognition within each video clip. Evaluation was performed using the validity of spatio-temporal context learning for local behavior topics and abnormal behavior recognition. Furthermore, the performance of the proposed approach in abnormal behavior recognition improved effectively and significantly in complex surveillance scenes.

시공간 정보를 이용한 근접 돼지의 영상 분할 (Image Segmentation of Adjoining Pigs Using Spatio-Temporal Information)

  • 사재원;한승엽;이상진;김희곤;이성주;정용화;박대희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권10호
    • /
    • pp.473-478
    • /
    • 2015
  • 최근, 축산 농가에서 돈사 내 개별 돼지들의 자동 영상 모니터링 기법이 중요한 이슈로 떠오르고 있다. 현재까지 이를 위한 다양한 연구들이 소개되어 왔지만, 아직도 추가적인 연구 노력이 요구된다. 특히, 혼잡한 돈방에서 움직이는 근접한 돼지들의 객체 식별을 위한 연구가 영상처리 분야 입장에서 요구된다. 본 논문에서는 감시카메라 환경에서 움직이는 근접한 돼지들의 객체 식별을 위한 해법으로써 시공간 정보와 영역 확장 기법을 이용한 효율적인 영상 분할 방법론을 새롭게 제안한다. 실제로 세종에 위치한 한 돈사에서 취득한 영상 정보를 이용하여 본 논문에서 제안한 시스템의 성능을 실험적으로 검증하였다.

안전한 보안 감시 시스템을 위한 효율적인 접근 제어 기법 (An Efficient Access Control Mechanism for Secure Surveillance Systems)

  • 양수미;박재성
    • 한국통신학회논문지
    • /
    • 제39B권4호
    • /
    • pp.228-233
    • /
    • 2014
  • 사회 안전 서비스 제공을 위한 보안 감시 시스템이 보편화되어, 보안 감시 시스템에 대한 접근성이 확대되고, 향상되는 만큼 안정성 확보를 위한 접근제어 기법이 요구된다. ONVIF(Open Network Video Interface Forum)에서 제정하는 표준은 보안 감시용 스마트 카메라의 호환성을 목적으로 만든 표준으로, 클라이언트에게 제공될 웹서비스의 프레임워크를 정의하고 있다. 본 논문에서는 ONVIF 표준을 따르는 보안 감시 카메라 네트워크에서 안전한 시스템 접근을 위하여 웹 서비스의 정보 보호 기법을 수용하고, 웹서비스의 안전한 제공을 위한 효율적인 접근 제어 모델을 제안 한다.

Online Video Synopsis via Multiple Object Detection

  • Lee, JaeWon;Kim, DoHyeon;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권8호
    • /
    • pp.19-28
    • /
    • 2019
  • In this paper, an online video summarization algorithm based on multiple object detection is proposed. As crime has been on the rise due to the recent rapid urbanization, the people's appetite for safety has been growing and the installation of surveillance cameras such as a closed-circuit television(CCTV) has been increasing in many cities. However, it takes a lot of time and labor to retrieve and analyze a huge amount of video data from numerous CCTVs. As a result, there is an increasing demand for intelligent video recognition systems that can automatically detect and summarize various events occurring on CCTVs. Video summarization is a method of generating synopsis video of a long time original video so that users can watch it in a short time. The proposed video summarization method can be divided into two stages. The object extraction step detects a specific object in the video and extracts a specific object desired by the user. The video summary step creates a final synopsis video based on the objects extracted in the previous object extraction step. While the existed methods do not consider the interaction between objects from the original video when generating the synopsis video, in the proposed method, new object clustering algorithm can effectively maintain interaction between objects in original video in synopsis video. This paper also proposed an online optimization method that can efficiently summarize the large number of objects appearing in long-time videos. Finally, Experimental results show that the performance of the proposed method is superior to that of the existing video synopsis algorithm.

Broken Integrity Detection of Video Files in Video Event Data Recorders

  • Lee, Choongin;Lee, Jehyun;Pyo, Youngbin;Lee, Heejo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권8호
    • /
    • pp.3943-3957
    • /
    • 2016
  • As digital evidence has a highly influential role in proving the innocence of suspects, methods for integrity verification of such digital evidence have become essential in the digital forensic field. Most surveillance camera systems are not equipped with proper built-in integrity protection functions. Because digital forgery techniques are becoming increasingly sophisticated, manually determining whether digital content has been falsified is becoming extremely difficult for investigators. Hence, systematic approaches to forensic integrity verification are essential for ascertaining truth or falsehood. We propose an integrity determination method that utilizes the structure of the video content in a Video Event Data Recorder (VEDR). The proposed method identifies the difference in frame index fields between a forged file and an original file. Experiments conducted using real VEDRs in the market and video files forged by a video editing tool demonstrate that the proposed integrity verification scheme can detect broken integrity in video content.