• Title/Summary/Keyword: video-based recognition system

Search Result 192, Processing Time 0.027 seconds

Ontology and Sequential Rule Based Streaming Media Event Recognition (온톨로지 및 순서 규칙 기반 대용량 스트리밍 미디어 이벤트 인지)

  • Soh, Chi-Seung;Park, Hyun-Kyu;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.470-479
    • /
    • 2016
  • As the number of various types of media data such as UCC (User Created Contents) increases, research is actively being carried out in many different fields so as to provide meaningful media services. Amidst these studies, a semantic web-based media classification approach has been proposed; however, it encounters some limitations in video classification because of its underlying ontology derived from meta-information such as video tag and title. In this paper, we define recognized objects in a video and activity that is composed of video objects in a shot, and introduce a reasoning approach based on description logic. We define sequential rules for a sequence of shots in a video and describe how to classify it. For processing the large amount of increasing media data, we utilize Spark streaming, and a distributed in-memory big data processing framework, and describe how to classify media data in parallel. To evaluate the efficiency of the proposed approach, we conducted an experiment using a large amount of media ontology extracted from Youtube videos.

Development of Real-time Video Search System Using the Intelligent Object Recognition Technology (지능형 객체 인식 기술을 이용한 실시간 동영상 검색시스템)

  • Chang, Jae-Young;Kang, Chan-Hyeok;Yoon, Jae-Min;Cho, Jae-Won;Jung, Ji-Sung;Chun, Jonghoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.85-91
    • /
    • 2020
  • Recently, video-taping equipment such as CCTV have been seeing more use for crime prevention and general safety concerns. Since these video-taping equipment operates all throughout the day, the need for security personnel is lessened, and naturally costs incurred from managing such manpower should also decrease. However, technology currently used predominantly lacks self-sufficiency when given the task of searching for a specific object in the recorded video such as a person, and has to be done manually; current security-based video equipment is insufficient in an environment where real-time information retrieval is required. In this paper, we propose a technology that uses the latest deep-learning technology and OpenCV library to quickly search for a specific person in a video; the search is based on the clothing information that is inputted by the user and transmits the result in real time. We implemented our system to automatically recognize specific human objects in real time by using the YOLO library, whilst deep learning technology is used to classify human clothes into top/bottom clothes. Colors are also detected through the OpenCV library which are then all combined to identify the requested object. The system presented in this paper not only accurately and quickly recognizes a person object with a specific clothing, but also has a potential extensibility that can be used for other types of object recognition in a video surveillance system for various purposes.

Recording Support System for Off-Line Conference using Face and Speaker Recognition (얼굴 인식 및 화자 정보를 이용한 오프라인 회의 기록 지원 시스템)

  • Son, Yun-Sik;Jung, Jin-Woo;Park, Han-Mu;Kye, Seung-Chul;Yoon, Jong-Hyuk;Jung, Nak-Chun;Oh, Se-Man
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • Recent multimedia technology has supported various application services based on the development of effective movie compression and network techniques. On-line video conference system is a typical example that use theses two technologies effectively. On-line video conference system can be characterized into an effective conferencing method for long-distanced on-line conference members. But, unfortunately, off-line conference with face-to-face meeting is more frequent than on-line conference and their support systems have not been sufficiently considered. In this paper, we propose a recording support system for off-Line conference using face and speaker recognition. This system finds the speaker in the conference by using three microphones and three webcam cameras. And analysis is done with face region information that gathered by currently active webcam camera, and recognizes the identity of face. Finally, the system tracks speaker and records conference with extract speaker information.

Cloth Product Recognition based on Siamese Network with Body Region Extraction method

  • Budiman, Sutanto Edward;Kurniawan, Edwin;Lee, Seung Heon;Lee, Jae Seung;Lee, Suk-Ho
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.128-134
    • /
    • 2022
  • Nowadays, people consume a lot of content such as web dramas or K-pop videos through mobile devices such as smartphones, and the market for indirect advertisements through these web dramas or K-pop videos is also increasing every year. In order to lead to the immediate purchase of indirect products in web dramas, a system that allows consumers to purchase immediately at the time the products appear in the drama is needed. In this paper, we propose a system to allow viewers to purchase products worn by celebrities immediately when viewers see and click on them. When a user clicks on a video, it recognizes the product worn by the celebrity, and displays information on the screen on the most similar product corresponding to the recognized product, allowing them to go to the seller's site where they can purchase it. In order for such a system to operate stably, a pose estimation and siamese network-based system is proposed. The proposed system will primarily be released as a streaming service in the form of an app or web page that connects the products in web dramas or other K-pop video contents screened on the mobile with e-commerce. Furthermore, in the future, the technology is expected to be used globally in various industries such as smart mobility and display kiosks.

Human Gait Recognition Based on Spatio-Temporal Deep Convolutional Neural Network for Identification

  • Zhang, Ning;Park, Jin-ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.927-939
    • /
    • 2020
  • Gait recognition can identify people's identity from a long distance, which is very important for improving the intelligence of the monitoring system. Among many human features, gait features have the advantages of being remotely available, robust, and secure. Traditional gait feature extraction, affected by the development of behavior recognition, can only rely on manual feature extraction, which cannot meet the needs of fine gait recognition. The emergence of deep convolutional neural networks has made researchers get rid of complex feature design engineering, and can automatically learn available features through data, which has been widely used. In this paper,conduct feature metric learning in the three-dimensional space by combining the three-dimensional convolution features of the gait sequence and the Siamese structure. This method can capture the information of spatial dimension and time dimension from the continuous periodic gait sequence, and further improve the accuracy and practicability of gait recognition.

A Human Activity Recognition System Using ICA and HMM

  • Uddin, Zia;Lee, J.J.;Kim, T.S.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.499-503
    • /
    • 2008
  • In this paper, a novel human activity recognition method is proposed which utilizes independent components of activity shape information from image sequences and Hidden Markov Model (HMM) for recognition. Activities are represented by feature vectors from Independent Component Analysis (ICA) on video images, and based on these features; recognition is achieved by trained HMMs of activities. Our recognition performance has been compared to the conventional method where Principle Component Analysis (PCA) is typically used to derive activity shape features. Our results show that superior recognition is achieved with our proposed method especially for activities (e.g., skipping) that cannot be easily recognized by the conventional method.

  • PDF

A Study on Knowledge based Conference Management System Architecture (지식 기반 회의관리 시스템 아키텍처에 관한 연구)

  • Kim Chang-Su;Jung Hoe-Kyung;Lee Soo-Youn
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1691-1699
    • /
    • 2006
  • This thesis proposes standard of knowledge-base system architecture for managing conferences in order to make ontology in the put of a conference rather than all parts. Also, this thesis proposes possibility of developing into the system that systematize transformed and processed information through various recognition systems, video conference, speech recognition, motion recognition, and so on, make knowledge and analyze it after preparing standards of objective estimation through simulation and analysis.

CNN Based Face Tracking and Re-identification for Privacy Protection in Video Contents (비디오 컨텐츠의 프라이버시 보호를 위한 CNN 기반 얼굴 추적 및 재식별 기술)

  • Park, TaeMi;Phu, Ninh Phung;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-68
    • /
    • 2021
  • Recently there is sharply increasing interest in watching and creating video contents such as YouTube. However, creating such video contents without privacy protection technique can expose other people in the background in public, which is consequently violating their privacy rights. This paper seeks to remedy these problems and proposes a technique that identifies faces and protecting portrait rights by blurring the face. The key contribution of this paper lies on our deep-learning technique with low detection error and high computation that allow to protect portrait rights in real-time videos. To reduce errors, an efficient tracking algorithm was used in this system with face detection and face recognition algorithm. This paper compares the performance of the proposed system with and without the tracking algorithm. We believe this system can be used wherever the video is used.

Detection and Recognition of Illegally Parked Vehicles Based on an Adaptive Gaussian Mixture Model and a Seed Fill Algorithm

  • Sarker, Md. Mostafa Kamal;Weihua, Cai;Song, Moon Kyou
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.197-204
    • /
    • 2015
  • In this paper, we present an algorithm for the detection of illegally parked vehicles based on a combination of some image processing algorithms. A digital camera is fixed in the illegal parking region to capture the video frames. An adaptive Gaussian mixture model (GMM) is used for background subtraction in a complex environment to identify the regions of moving objects in our test video. Stationary objects are detected by using the pixel-level features in time sequences. A stationary vehicle is detected by using the local features of the object, and thus, information about illegally parked vehicles is successfully obtained. An automatic alarm system can be utilized according to the different regulations of different illegal parking regions. The results of this study obtained using a test video sequence of a real-time traffic scene show that the proposed method is effective.

ASM Algorithm Applid to Image Object spFACS Study on Face Recognition (영상객체 spFACS ASM 알고리즘을 적용한 얼굴인식에 관한 연구)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.1-12
    • /
    • 2016
  • Digital imaging technology has developed into a state-of-the-art IT convergence, composite industry beyond the limits of the multimedia industry, especially in the field of smart object recognition, face - Application developed various techniques have been actively studied in conjunction with the phone. Recently, face recognition technology through the object recognition technology and evolved into intelligent video detection recognition technology, image recognition technology object detection recognition process applies to skills through is applied to the IP camera, the image object recognition technology with face recognition and active research have. In this paper, we first propose the necessary technical elements of the human factor technology trends and look at the human object recognition based spFACS (Smile Progress Facial Action Coding System) for detecting smiles study plan of the image recognition technology recognizes objects. Study scheme 1). ASM algorithm. By suggesting ways to effectively evaluate psychological research skills through the image object 2). By applying the result via the face recognition object to the tooth area it is detected in accordance with the recognized facial expression recognition of a person demonstrated the effect of extracting the feature points.