• Title/Summary/Keyword: video-based recognition system

Search Result 192, Processing Time 0.031 seconds

A Search Model Using Time Interval Variation to Identify Face Recognition Results

  • Choi, Yun-seok;Lee, Wan Yeon
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.64-71
    • /
    • 2022
  • Various types of attendance management systems are being introduced in a remote working environment and research on using face recognition is in progress. To ensure accurate worker's attendance, a face recognition-based attendance management system must analyze every frame of video, but face recognition is a heavy task, the number of the task should be minimized without affecting accuracy. In this paper, we proposed a search model using time interval variation to minimize the number of face recognition task of recorded videos for attendance management system. The proposed model performs face recognition by changing the interval of the frame identification time when there is no change in the attendance status for a certain period. When a change in the face recognition status occurs, it moves in the reverse direction and performs frame checks to more accurate attendance time checking. The implementation of proposed model performed at least 4.5 times faster than all frame identification and showed at least 97% accuracy.

Context-aware Video Surveillance System

  • An, Tae-Ki;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2012
  • A video analysis system used to detect events in video streams generally has several processes, including object detection, object trajectories analysis, and recognition of the trajectories by comparison with an a priori trained model. However, these processes do not work well in a complex environment that has many occlusions, mirror effects, and/or shadow effects. We propose a new approach to a context-aware video surveillance system to detect predefined contexts in video streams. The proposed system consists of two modules: a feature extractor and a context recognizer. The feature extractor calculates the moving energy that represents the amount of moving objects in a video stream and the stationary energy that represents the amount of still objects in a video stream. We represent situations and events as motion changes and stationary energy in video streams. The context recognizer determines whether predefined contexts are included in video streams using the extracted moving and stationary energies from a feature extractor. To train each context model and recognize predefined contexts in video streams, we propose and use a new ensemble classifier based on the AdaBoost algorithm, DAdaBoost, which is one of the most famous ensemble classifier algorithms. Our proposed approach is expected to be a robust method in more complex environments that have a mirror effect and/or a shadow effect.

A Study on Rotational Alignment Algorithm for Improving Character Recognition (문자 인식 향상을 위한 회전 정렬 알고리즘에 관한 연구)

  • Jin, Go-Whan
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.79-84
    • /
    • 2019
  • Video image based technology is being used in various fields with continuous development. The demand for vision system technology that analyzes and discriminates image objects acquired through cameras is rapidly increasing. Image processing is one of the core technologies of vision systems, and is used for defect inspection in the semiconductor manufacturing field, object recognition inspection such as the number of tire surfaces and symbols. In addition, research into license plate recognition is ongoing, and it is necessary to recognize objects quickly and accurately. In this paper, propose a recognition model through the rotational alignment of objects after checking the angle value of the tilt of the object in the input video image for the recognition of inclined objects such as numbers or symbols marked on the surface. The proposed model can perform object recognition of the rotationally sorted image after extracting the object region and calculating the angle of the object based on the contour algorithm. The proposed model extracts the object region based on the contour algorithm, calculates the angle of the object, and then performs object recognition on the rotationally aligned image. In future research, it is necessary to study template matching through machine learning.

FPGA-based Object Recognition System (FPGA기반 객체인식 시스템)

  • Shin, Seong-Yoon;Cho, Gwang-Hyun;Cho, Seung-Pyo;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.407-408
    • /
    • 2022
  • In this paper, we will look at the components of the FPGA-based object recognition system one by one. Let's take a look at each function of the components camera, DLM, service system, video output monitor, deep trainer software, and external deep learning software.

  • PDF

Synthetic Circumstantial Judgement System Applied Recognition of Fire Levels Model (화재 상황 인식 모델을 적용한 종합 상황 판단 시스템)

  • Song, Jae-Won;Lee, Se-Hee;An, Tae-Ki;Shin, Jeong-Ryol
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1275-1281
    • /
    • 2011
  • This paper presents synthetic circumstantial judgement system that detects and predicts a fire in subway station. Unlike conventional fire surveillance systems that judge the fire or not through smoke, CO, temperature or variation of temperature, a proposed system discovers a fire more easily or gives the alarm high possibility of fire to operator through recognition of fire levels based on Fuzzy Inference System using by FCM and information of objects from video data.

  • PDF

Efficient Mobile Writing System with Korean Input Interface Based on Face Recognition

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.49-56
    • /
    • 2020
  • The virtual Korean keyboard system is a method of inputting characters by touching a fixed position. This system is very inconvenient for people who have difficulty moving their fingers. To alleviate this problem, this paper proposes an efficient framework that enables keyboard input and handwriting through video and user motion obtained through the RGB camera of the mobile device. To develop this system, we use face recognition to calculate control coordinates from the input video, and develop an interface that can input and combine Hangul using this coordinate value. The control position calculated based on face recognition acts as a pointer to select and transfer the letters on the keyboard, and finally combines the transmitted letters to integrate them to perform the Hangul keyboard function. The result of this paper is an efficient writing system that utilizes face recognition technology, and using this system is expected to improve the communication and special education environment for people with physical disabilities as well as the general public.

Human Face Identification using KL Transform and Neural Networks (KL 변환과 신경망을 이용한 개인 얼굴 식별)

  • Kim, Yong-Joo;Ji, Seung-Hwan;Yoo, Jae-Hyung;Kim, Jung-Hwan;Park, Mignon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • Machine recognition of faces from still and video images is emerging as an active research area spanning several disciplines such as image processing, pattern recognition, computer vision and neural networks. In addition, human face identification has numerous applications such as human interface based systems and real-time video systems of surveillance and security. In this paper, we propose an algorithm that can identify a particular individual face. We consider human face identification system in color space, which hasn't often considered in conventional in conventional methods. In order to make the algorithm insensitive to luminance, we convert the conventional RGB coordinates into normalized CIE coordinates. The normalized-CIE-based facial images are KL-transformed. The transformed data are used as the input of multi-layered neural network and the network are trained using error-backpropagation methods. Finally, we verify the system performance of the proposed algorithm by experiments.

  • PDF

Abnormal Situation Detection on Surveillance Video Using Object Detection and Action Recognition (객체 탐지와 행동인식을 이용한 영상내의 비정상적인 상황 탐지 네트워크)

  • Kim, Jeong-Hun;Choi, Jong-Hyeok;Park, Young-Ho;Nasridinov, Aziz
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.186-198
    • /
    • 2021
  • Security control using surveillance cameras is established when people observe all surveillance videos directly. However, this task is labor-intensive and it is difficult to detect all abnormal situations. In this paper, we propose a deep neural network model, called AT-Net, that automatically detects abnormal situations in the surveillance video, and introduces an automatic video surveillance system developed based on this network model. In particular, AT-Net alleviates the ambiguity of existing abnormal situation detection methods by mapping features representing relationships between people and objects in surveillance video to the new tensor structure based on sparse coding. Through experiments on actual surveillance videos, AT-Net achieved an F1-score of about 89%, and improved abnormal situation detection performance by more than 25% compared to existing methods.

A Video based Traffic Light Recognition System for Intelligent Vehicles (지능형 자동차를 위한 비디오 기반의 교통 신호등 인식 시스템)

  • Chu, Yeon Ho;Lee, Bok Joo;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.29-34
    • /
    • 2015
  • Traffic lights are common in cities and are important cues for the path planning of intelligent vehicles. In this paper, we propose a robust and efficient algorithm for recognizing traffic lights from video sequences captured by a low cost off-the-shelf camera. Instead of using color information for recognizing traffic lights, a shape based approach is adopted. In learning and detection phase, Histogram of Oriented Gradients (HOG) feature is used and a cascade classifier based on Adaboost algorithm is adopted as the main classifier for locating traffic lights. To decide the color of the traffic light, a technique based on histogram analysis in HSV color space is utilized. Experimental results on several video sequences from typical urban environment prove the effectiveness of the proposed algorithm.

Design of Metaverse for Two-Way Video Conferencing Platform Based on Virtual Reality

  • Yoon, Dongeon;Oh, Amsuk
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.189-194
    • /
    • 2022
  • As non-face-to-face activities have become commonplace, online video conferencing platforms have become popular collaboration tools. However, existing video conferencing platforms have a structure in which one side unilaterally exchanges information, potentially increase the fatigue of meeting participants. In this study, we designed a video conferencing platform utilizing virtual reality (VR), a metaverse technology, to enable various interactions. A virtual conferencing space and realistic VR video conferencing content authoring tool support system were designed using Meta's Oculus Quest 2 hardware, the Unity engine, and 3D Max software. With the Photon software development kit, voice recognition was designed to perform automatic text translation with the Watson application programming interface, allowing the online video conferencing participants to communicate smoothly even if using different languages. It is expected that the proposed video conferencing platform will enable conference participants to interact and improve their work efficiency.