• Title/Summary/Keyword: video-based recognition system

Search Result 192, Processing Time 0.029 seconds

A Computer Vision-Based Banknote Recognition System for the Blind with an Accuracy of 98% on Smartphone Videos

  • Sanchez, Gustavo Adrian Ruiz
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.67-72
    • /
    • 2019
  • This paper proposes a computer vision-based banknote recognition system intended to assist the blind. This system is robust and fast in recognizing banknotes on videos recorded with a smartphone on real-life scenarios. To reduce the computation time and enable a robust recognition in cluttered environments, this study segments the banknote candidate area from the background utilizing a technique called Pixel-Based Adaptive Segmenter (PBAS). The Speeded-Up Robust Features (SURF) interest point detector is used, and SURF feature vectors are computed only when sufficient interest points are found. The proposed algorithm achieves a recognition accuracy of 98%, a 100% true recognition rate and a 0% false recognition rate. Although Korean banknotes are used as a working example, the proposed system can be applied to recognize other countries' banknotes.

Integrated Context Awareness by Sharing Information between Cameras (카메라간 정보공유를 통한 종합적인 상황인식)

  • An, Tae-Ki;Shin, Jeong-Ryol;Han, Seok-Youn;Lee, Gil-Jae
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1360-1365
    • /
    • 2008
  • Most recognition algorithms for intelligent surveillance system are based on analysis of the video collected from one camera. Video analysis is also used to compute the internal parameters used in the recognition process. The algorithm computes only the video of the fixed area so that it is a insufficient method and it could not use information of the related areas. However, intelligent integrated surveillance system should be constructed to correlate the events in the other areas as well as in the fixed area. In this paper, in order to construct the intelligent integrated surveillance system, we describe the method not to focus on the video of each camera but to aware the whole event by sharing information between cameras, which is more accurate. The method would be used to aware the event in the fixed area such as stations in urban transit.

  • PDF

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.

Human Action Recognition Based on 3D Human Modeling and Cyclic HMMs

  • Ke, Shian-Ru;Thuc, Hoang Le Uyen;Hwang, Jenq-Neng;Yoo, Jang-Hee;Choi, Kyoung-Ho
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.662-672
    • /
    • 2014
  • Human action recognition is used in areas such as surveillance, entertainment, and healthcare. This paper proposes a system to recognize both single and continuous human actions from monocular video sequences, based on 3D human modeling and cyclic hidden Markov models (CHMMs). First, for each frame in a monocular video sequence, the 3D coordinates of joints belonging to a human object, through actions of multiple cycles, are extracted using 3D human modeling techniques. The 3D coordinates are then converted into a set of geometrical relational features (GRFs) for dimensionality reduction and discrimination increase. For further dimensionality reduction, k-means clustering is applied to the GRFs to generate clustered feature vectors. These vectors are used to train CHMMs separately for different types of actions, based on the Baum-Welch re-estimation algorithm. For recognition of continuous actions that are concatenated from several distinct types of actions, a designed graphical model is used to systematically concatenate different separately trained CHMMs. The experimental results show the effective performance of our proposed system in both single and continuous action recognition problems.

A Real-time Face Recognition System using Fast Face Detection (빠른 얼굴 검출을 이용한 실시간 얼굴 인식 시스템)

  • Lee Ho-Geun;Jung Sung-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1247-1259
    • /
    • 2005
  • This paper proposes a real-time face recognition system which detects multiple faces from low resolution video such as web-camera video. Face recognition system consists of the face detection step and the face classification step. At First, it finds face region candidates by using AdaBoost based object detection method which have fast speed and robust performance. It generates reduced feature vector for each face region candidate by using principle component analysis. At Second, Face classification used Principle Component Analysis and multi-SVM. Experimental result shows that the proposed method achieves real-time face detection and face recognition from low resolution video. Additionally, We implement the auto-tracking face recognition system using the Pan-Tilt Web-camera and radio On/Off digital door-lock system with face recognition system.

Multiple Object Tracking and Identification System Using CCTV and RFID (감시 카메라와 RFID를 활용한 다수 객체 추적 및 식별 시스템)

  • Kim, Jin-Ah;Moon, Nammee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.2
    • /
    • pp.51-58
    • /
    • 2017
  • Because of safety and security, Surveillance camera market is growing. Accordingly, Study on video recognition and tracking is also actively in progress, but There is a limit to identify object by obtaining the information of object identified and tracked. Especially, It is more difficult to identify multiple objects in open space like shopping mall, airport and others utilized surveillance camera. Therefore, This paper proposed adding object identification function by using RFID to existing video-based object recognition and tracking system. Also, We tried to complement each other to solve the problem of video and RFID based. Thus, through the interaction of system modules We propose a solution to the problems of failing video-based object recognize and tracking and the problems that could be cased by the recognition error of RFID. The system designed to identify the object by classifying the identification of object in four steps so that the data reliability of the identified object can be maintained. To judge the efficiency of this system, this demonstrated by implementing the simulation program.

Depth Images-based Human Detection, Tracking and Activity Recognition Using Spatiotemporal Features and Modified HMM

  • Kamal, Shaharyar;Jalal, Ahmad;Kim, Daijin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1857-1862
    • /
    • 2016
  • Human activity recognition using depth information is an emerging and challenging technology in computer vision due to its considerable attention by many practical applications such as smart home/office system, personal health care and 3D video games. This paper presents a novel framework of 3D human body detection, tracking and recognition from depth video sequences using spatiotemporal features and modified HMM. To detect human silhouette, raw depth data is examined to extract human silhouette by considering spatial continuity and constraints of human motion information. While, frame differentiation is used to track human movements. Features extraction mechanism consists of spatial depth shape features and temporal joints features are used to improve classification performance. Both of these features are fused together to recognize different activities using the modified hidden Markov model (M-HMM). The proposed approach is evaluated on two challenging depth video datasets. Moreover, our system has significant abilities to handle subject's body parts rotation and body parts missing which provide major contributions in human activity recognition.

An Automatic Summarization System of Baseball Game Video Using the Caption Information (자막 정보를 이용한 야구경기 비디오의 자동요약 시스템)

  • 유기원;허영식
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.107-113
    • /
    • 2002
  • In this paper, we propose a method and a software system for automatic summarization of baseball game videos. The proposed system pursues fast execution and high accuracy of summarization. To satisfy the requirement, the detection of important events in baseball video is performed through DC-based shot boundary detection algorithm and simple caption recognition method. Furthermore, the proposed system supports a hierarchical description so that users can browse and navigate videos in several levels of summarization. In this paper, we propose a method and a software system for automatic summarization of baseball game videos. The proposed system pursues fast execution and high accuracy of summarization. To satisfy the requirement, the detection of important events in baseball video is performed through DC-based shot boundary detection algorithm and simple caption recognition method. Furthermore, the proposed system supports a hierarchical description so that users can browse and navigate videos in several levels of summarization.

Implementation of the Broadcasting System for Digital Media Contents (디지털 미디어 콘텐츠 방송 시스템 구현)

  • Shin, Jae-Heung;Kim, Hong-Ryul;Lee, Sang-Cheal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1883-1887
    • /
    • 2008
  • Most of digital media contents are composed with video and audio, picture and animation informations. Sometime, there is some deviation of information recognition quality for the video and audio information according to information receiver's characteristics or the understanding. But visual information using the text provide most clear and accurate ways for information recognition to human being. In this paper, we propose a new broadcasting system(BSDMC) to transmit clear and accurate meaning of the digital media contents. We implement general-purpose components to display the video, picture, text and symbol simultaneously. Only plug-in and call these components with proper parameters on the application developing tool, we can easily develop the multimedia contents broadcasting system. These components are implemented based on the object-oriented framework and modular structure so that increase the reusability and can be develop other applications quick and reliable.

A Deep Learning Algorithm for Fusing Action Recognition and Psychological Characteristics of Wrestlers

  • Yuan Yuan;Yuan Yuan;Jun Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.754-774
    • /
    • 2023
  • Wrestling is one of the popular events for modern sports. It is difficult to quantitatively describe a wrestling game between athletes. And deep learning can help wrestling training by human recognition techniques. Based on the characteristics of latest wrestling competition rules and human recognition technologies, a set of wrestling competition video analysis and retrieval system is proposed. This system uses a combination of literature method, observation method, interview method and mathematical statistics to conduct statistics, analysis, research and discussion on the application of technology. Combined the system application in targeted movement technology. A deep learning-based facial recognition psychological feature analysis method for the training and competition of classical wrestling after the implementation of the new rules is proposed. The experimental results of this paper showed that the proportion of natural emotions of male and female wrestlers was about 50%, indicating that the wrestler's mentality was relatively stable before the intense physical confrontation, and the test of the system also proved the stability of the system.