• Title/Summary/Keyword: video-based recognition system

Search Result 192, Processing Time 0.031 seconds

Implementation of Character and Object Metadata Generation System for Media Archive Construction (미디어 아카이브 구축을 위한 등장인물, 사물 메타데이터 생성 시스템 구현)

  • Cho, Sungman;Lee, Seungju;Lee, Jaehyeon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1076-1084
    • /
    • 2019
  • In this paper, we introduced a system that extracts metadata by recognizing characters and objects in media using deep learning technology. In the field of broadcasting, multimedia contents such as video, audio, image, and text have been converted to digital contents for a long time, but the unconverted resources still remain vast. Building media archives requires a lot of manual work, which is time consuming and costly. Therefore, by implementing a deep learning-based metadata generation system, it is possible to save time and cost in constructing media archives. The whole system consists of four elements: training data generation module, object recognition module, character recognition module, and API server. The deep learning network module and the face recognition module are implemented to recognize characters and objects from the media and describe them as metadata. The training data generation module was designed separately to facilitate the construction of data for training neural network, and the functions of face recognition and object recognition were configured as an API server. We trained the two neural-networks using 1500 persons and 80 kinds of object data and confirmed that the accuracy is 98% in the character test data and 42% in the object data.

The Implementation of Face Authentication System Using Real-Time Image Processing (실시간 영상처리를 이용한 얼굴 인증 시스템 구현)

  • Baek, Young-Hyun;Shin, Seong;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.193-199
    • /
    • 2008
  • In this paper, it is proposed the implementation of face authentication system based on real-time image processing. We described the process implementing the two steps for real-time face authentication system. At first face detection steps, we describe the face detection by using feature of wavelet transform, LoG operator and hausdorff distance matching. In the second step we describe the new dual-line principal component analysis(PCA) for real-time face recognition. It is combines horizontal line to vertical line so as to accept local changes of PCA. The proposed system is affected a little by the video size and resolution. And then simulation results confirm the effectiveness of out system and demonstrate its superiority to other conventional algorithm. Finally, the possibility of performance evaluation and real-time processing was confirmed through the implementation of face authentication system.

Enterprise Human Resource Management using Hybrid Recognition Technique (하이브리드 인식 기술을 이용한 전사적 인적자원관리)

  • Han, Jung-Soo;Lee, Jeong-Heon;Kim, Gui-Jung
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.333-338
    • /
    • 2012
  • Human resource management is bringing the various changes with the IT technology. In particular, if HRM is non-scientific method such as group management, physical plant, working hours constraints, personal contacts, etc, the current enterprise human resources management(e-HRM) appeared in the individual dimension management, virtual workspace (for example: smart work center, home work, etc.), working time flexibility and elasticity, computer-based statistical data and the scientific method of analysis and management has been a big difference in the sense. Therefore, depending on changes in the environment, companies have introduced a variety of techniques as RFID card, fingerprint time & attendance systems in order to build more efficient and strategic human resource management system. In this paper, time and attendance, access control management system was developed using multi camera for 2D and 3D face recognition technology-based for efficient enterprise human resource management. We had an issue with existing 2D-style face-recognition technology for lighting and the attitude, and got more than 90% recognition rate against the poor readability. In addition, 3D face recognition has computational complexities, so we could improve hybrid video recognition and the speed using 3D and 2D in parallel.

Fall Detection Algorithm Based on Machine Learning (머신러닝 기반 낙상 인식 알고리즘)

  • Jeong, Joon-Hyun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.226-228
    • /
    • 2021
  • We propose a fall recognition system using the Pose Detection of Google ML kit using video data. Using the Pose detection algorithm, 33 three-dimensional feature points extracted from the body are used to recognize the fall. The algorithm that recognizes the fall by analyzing the extracted feature points uses k-NN. While passing through the normalization process in order not to be influenced in the size of the human body within the size of image and image, analyzing the relative movement of the feature points and the fall recognizes, thirteen of the thriteen test videos recognized the fall, showing an 100% success rate.

  • PDF

Recognition of Events by Human Motion for Context-aware Computing (상황인식 컴퓨팅을 위한 사람 움직임 이벤트 인식)

  • Cui, Yao-Huan;Shin, Seong-Yoon;Lee, Chang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.47-57
    • /
    • 2009
  • Event detection and recognition is an active and challenging topic recent in Computer Vision. This paper describes a new method for recognizing events caused by human motion from video sequences in an office environment. The proposed approach analyzes human motions using Motion History Image (MHI) sequences, and is invariant to body shapes. types or colors of clothes and positions of target objects. The proposed method has two advantages; one is thant the proposed method is less sensitive to illumination changes comparing with the method using color information of objects of interest, and the other is scale invariance comparing with the method using a prior knowledge like appearances or shapes of objects of interest. Combined with edge detection, geometrical characteristics of the human shape in the MHI sequences are considered as the features. An advantage of the proposed method is that the event detection framework is easy to extend by inserting the descriptions of events. In addition, the proposed method is the core technology for event detection systems based on context-aware computing as well as surveillance systems based on computer vision techniques.

YouTube Channel Ranking Scheme based on Hidden Qualitative Information Analysis (유튜브 은닉 질적 정보 분석 기반 유튜브 채널 랭킹 기법)

  • Lee, Ji Hyeon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.757-763
    • /
    • 2019
  • Youtube has become so popular that it is called the age of YouTube. As the number of users and contents increase, the choice of information increases. However, it is difficult to select information that meets the needs of users. YouTube provides recommendations based on their watch list. Therefore, in this study, we want to analyze the channel of user's subject in various angles and provide the proposed scheme based on the crawled channels, measurement of the perception of channels and channel videos through quantitative data and hidden qualitative data analysis. Based on the above two data analysis, it is possible to know the recognition of the channel and the recognition of the channel video, thereby providing a ranking of the channels that deal with the topic. Finally, as a case study, we recommend English learning channels to users based on numerical data statistics and emotional analysis results to maximize flipped learning effect regardless of time and space.

A Fast SIFT Implementation Based on Integer Gaussian and Reconfigurable Processor

  • Su, Le Tran;Lee, Jong Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.39-52
    • /
    • 2009
  • Scale Invariant Feature Transform (SIFT) is an effective algorithm in object recognition, panorama stitching, and image matching, however, due to its complexity, real time processing is difficult to achieve with software approaches. This paper proposes using a reconfigurable hardware processor with integer half kernel. The integer half kernel Gaussian reduces the Gaussian pyramid complexity in about half [] and the reconfigurable processor carries out a parallel implementation of a full search Fast SIFT algorithm. We use a low memory, fine grain single instruction stream multiple data stream (SIMD) pixel processor that is currently being developed. This implementation fully exposes the available parallelism of the SIFT algorithm process and exploits the processing and I/O capabilities of the processor which results in a system that can perform real time image and video compression. We apply this novel implementation to images and measure the effectiveness. Experimental simulation results indicate that the proposed implementation is capable of real time applications.

  • PDF

Design and Implementation of Visitor Access Control System using Deep learning Face Recognition (딥러닝 얼굴인식 기술을 활용한 방문자 출입관리 시스템 설계와 구현)

  • Heo, Seok-Yeol;Kim, Kang Min;Lee, Wan-Jik
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.245-251
    • /
    • 2021
  • As the trend of steadily increasing the number of single or double household, there is a growing demand to see who is the outsider visiting the home during the free time. Various models of face recognition technology have been proposed through many studies, and Harr Cascade of OpenCV and Hog of Dlib are representative open source models. Among the two modes, Dlib's Hog has strengths in front of the indoor and at a limited distance, which is the focus of this study. In this paper, a face recognition visitor access system based on Dlib was designed and implemented. The whole system consists of a front module, a server module, and a mobile module, and in detail, it includes face registration, face recognition, real-time visitor verification and remote control, and video storage functions. The Precision, Specificity, and Accuracy according to the change of the distance threshold value were calculated using the error matrix with the photos published on the Internet, and compared with the results of previous studies. As a result of the experiment, it was confirmed that the implemented system was operating normally, and the result was confirmed to be similar to that reported by Dlib.

An Architecture for Mobile Instruction: Application to Mathematics Education through the Web

  • Kim, Steven H.;Kwon, Oh-Nam;Kim, Eun-Jung
    • Research in Mathematical Education
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 2000
  • The rapid proliferation of wireless networks provides a ubiquitous channel for delivering instructional materials at the convenience of the user. By delivering content through portable devices linked to the Internet, the full spectrum of multimedia capabilities is available for engaging the user's interest. This capability encompasses not only text but images, video, speech generation and voice recognition. Moreover, the incorporation of machine learning capabilities at the source provides the ability to tailor the material to the general level of expertise of the user as well as the immediate needs of the moment: for instance, a request for information regarding a particular city might be covered by a leisurely presentation if solicited from the home, but more tersely if the user happens to be driving a car. This paper presents system architecture to support mobile instruction in conjunction with knowledge-based tutoring capabilities. For concreteress, the general concepts are examined in the context of a system for mathematics education on the Web.

  • PDF

Adaptive Background Modeling Considering Stationary Object and Object Detection Technique based on Multiple Gaussian Distribution

  • Jeong, Jongmyeon;Choi, Jiyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.51-57
    • /
    • 2018
  • In this paper, we studied about the extraction of the parameter and implementation of speechreading system to recognize the Korean 8 vowel. Face features are detected by amplifying, reducing the image value and making a comparison between the image value which is represented for various value in various color space. The eyes position, the nose position, the inner boundary of lip, the outer boundary of upper lip and the outer line of the tooth is found to the feature and using the analysis the area of inner lip, the hight and width of inner lip, the outer line length of the tooth rate about a inner mouth area and the distance between the nose and outer boundary of upper lip are used for the parameter. 2400 data are gathered and analyzed. Based on this analysis, the neural net is constructed and the recognition experiments are performed. In the experiment, 5 normal persons were sampled. The observational error between samples was corrected using normalization method. The experiment show very encouraging result about the usefulness of the parameter.