• Title/Summary/Keyword: video super-resolution

Search Result 29, Processing Time 0.025 seconds

Multi-Multicast Server for Video Conferencing on Information Super Highway (초고속 통신망에서 비디오 컨퍼런싱을 위한 다중 멀티캐스트 서버)

  • An, Sang-Jun;Lee, Seung-Ro;Han, Seon-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1858-1867
    • /
    • 1996
  • This paper describes a platform for video conferencing on Information Super Highway. In this paper we de-sign a Multi-Multicast Server(MCS) and the platform. The platform uses Multi-MultiCast Server for multitasking IP Multicast data on IP over ATM. Based on Multicast Address Resolution Server (AMRS) which was proposed in this paper the platform maps from D class IP addresses to ATM addresses. MARS handles a recovery in case of MCS down. This paper also presents a solving mechanism for handling botteneck by using the MCS.

  • PDF

Multicontents Integrated Image Animation within Synthesis for Hiqh Quality Multimodal Video (고화질 멀티 모달 영상 합성을 통한 다중 콘텐츠 통합 애니메이션 방법)

  • Jae Seung Roh;Jinbeom Kang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.257-269
    • /
    • 2023
  • There is currently a burgeoning demand for image synthesis from photos and videos using deep learning models. Existing video synthesis models solely extract motion information from the provided video to generate animation effects on photos. However, these synthesis models encounter challenges in achieving accurate lip synchronization with the audio and maintaining the image quality of the synthesized output. To tackle these issues, this paper introduces a novel framework based on an image animation approach. Within this framework, upon receiving a photo, a video, and audio input, it produces an output that not only retains the unique characteristics of the individuals in the photo but also synchronizes their movements with the provided video, achieving lip synchronization with the audio. Furthermore, a super-resolution model is employed to enhance the quality and resolution of the synthesized output.

An Improved Input Image Selection Algorithm for Super Resolution Still Image Reconstruction from Video Sequence (비디오 시퀀스로부터 고해상도 정지영상 복원을 위한 입력영상 선택 알고리즘)

  • Lee, Si-Kyoung;Cho, Hyo-Moon;Cho, Sang-Bok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.18-23
    • /
    • 2008
  • In this paper, we propose the input image selection-method to improve the reconstructed high-resolution (HR) image quality. To obtain ideal super-resolution (SR) reconstruction image, all input images are well-registered. However, the registration is not ideal in practice. Due to this reason, the selection of input images with low registration error (RE) is more important than the number of input images in order to obtain good quality of a HR image. The suitability of a candidate input image can be determined by using statistical and restricted registration properties. Therefore, we propose the proper candidate input Low Resolution(LR) image selection-method as a pre-processing for the SR reconstruction in automatic manner. In video sequences, all input images in specified region are allowed to use SR reconstruction as low-resolution input image and/or the reference image. The candidacy of an input LR image is decided by the threshold value and this threshold is calculated by using the maximum motion compensation error (MMCE) of the reference image. If the motion compensation error (MCE) of LR input image is in the range of 0 < MCE < MMCE then this LR input image is selected for SR reconstruction, else then LR input image are neglected. The optimal reference LR (ORLR) image is decided by comparing the number of the selected LR input (SLRI) images with each reference LR input (RLRI) image. Finally, we generate a HR image by using optimal reference LR image and selected LR images and by using the Hardie's interpolation method. This proposed algorithm is expected to improve the quality of SR without any user intervention.

  • PDF

UHD TV Image Enhancement using Multi-frame Example-based Super-resolution (멀티프레임 예제기반 초해상도 영상복원을 이용한 UHD TV 영상 개선)

  • Jeong, Seokhwa;Yoon, Inhye;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.154-161
    • /
    • 2015
  • A novel multiframe super-resolution (SR) algorithm is presented to overcome the limitation of existing single-image SR algorithms using motion information from adjacent frames in a video. The proposed SR algorithm consists of three steps: i) definition of a local region using interframe motion vectors, ii) multiscale patch generation and adaptive selection of multiple optimum patches, and iii) combination of optimum patches for super-resolution. The proposed algorithm increases the accuracy of patch selection using motion information and multiscale patches. Experimental results show that the proposed algorithm performs better than existing patch-based SR algorithms in the sense of both subjective and objective measures including the peak signal-to-noise ratio (PSNR) and structural similarity measure (SSIM).

Super Metric: Quality Assessment Methods for Immersive Video (몰입형 비디오 품질 평가를 위한 슈퍼 메트릭)

  • Jeong, Jong-Beom;Kim, Seunghwan;Lee, Soonbin;Kim, Inae;Ryu, Eun-Seok
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2021
  • Three degrees of freedom plus(3DoF+) and six degrees of freedom(6DoF) system, which supports a user's movements in graphical and natural scene-based virtual reality, requires multiple high-quality and high-resolution videos to provide immersive media. Previous video quality assessment methods are not appropriate for the 3DoF+ and 6DoF system assessment because different types of artifacts occur in these systems which are not shown in the traditional video compression. This paper provides the performance assessments of several quality assessment methods in 3DoF+ system. Furthermore, this paper presents a super metric, which combines multiple quality assessment methods, thereby it showed a higher correlation coefficient with the subjective quality assessment than the previous methods. Experimental results on 3DoF+ immersive video showed 0.4513 gain on correlation coefficient with subjective quality assessment compared to that of peak signal-to-noise ratio(PSNR).

Hardware Design of Super Resolution on Human Faces for Improving Face Recognition Performance of Intelligent Video Surveillance Systems (지능형 영상 보안 시스템의 얼굴 인식 성능 향상을 위한 얼굴 영역 초해상도 하드웨어 설계)

  • Kim, Cho-Rong;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.9
    • /
    • pp.22-30
    • /
    • 2011
  • Recently, the rising demand for intelligent video surveillance system leads to high-performance face recognition systems. The solution for low-resolution images acquired by a long-distance camera is required to overcome the distance limits of the existing face recognition systems. For that reason, this paper proposes a hardware design of an image resolution enhancement algorithm for real-time intelligent video surveillance systems. The algorithm is synthesizing a high-resolution face image from an input low-resolution image, with the help of a large collection of other high-resolution face images, called training set. When we checked the performance of the algorithm at 32bit RISC micro-processor, the entire operation took about 25 sec, which is inappropriate for real-time target applications. Based on the result, we implemented the hardware module and verified it using Xilinx Virtex-4 and ARM9-based embedded processor(S3C2440A). The designed hardware can complete the whole operation within 33 msec, so it can deal with 30 frames per second. We expect that the proposed hardware could be one of the solutions not only for real-time processing at the embedded environment, but also for an easy integration with existing face recognition system.

Exploring Image Processing and Image Restoration Techniques

  • Omarov, Batyrkhan Sultanovich;Altayeva, Aigerim Bakatkaliyevna;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.172-179
    • /
    • 2015
  • Because of the development of computers and high-technology applications, all devices that we use have become more intelligent. In recent years, security and surveillance systems have become more complicated as well. Before new technologies included video surveillance systems, security cameras were used only for recording events as they occurred, and a human had to analyze the recorded data. Nowadays, computers are used for video analytics, and video surveillance systems have become more autonomous and automated. The types of security cameras have also changed, and the market offers different kinds of cameras with integrated software. Even though there is a variety of hardware, their capabilities leave a lot to be desired. Therefore, this drawback is trying to compensate by dint of computer program solutions. Image processing is a very important part of video surveillance and security systems. Capturing an image exactly as it appears in the real world is difficult if not impossible. There is always noise to deal with. This is caused by the graininess of the emulsion, low resolution of the camera sensors, motion blur caused by movements and drag, focus problems, depth-of-field issues, or the imperfect nature of the camera lens. This paper reviews image processing, pattern recognition, and image digitization techniques, which will be useful in security services, to analyze bio-images, for image restoration, and for object classification.

A High-Resolution Image Reconstruction Method Utilizing Automatic Input Image Selection from Low-Resolution Video (저해상도 동영상에서의 자동화된 입력영상 선별을 이용한 고해상도 영상 복원 방법)

  • Kim Sung-Deuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.12-18
    • /
    • 2006
  • This paper presents a method to extract a good high-resolution image from a low-resolution video in an automatic manner. Since a high-resolution image reconstruction method utilizing several low-resolution input images works better than a conventional interpolation method utilizing single low-resolution input image only if the input images are well registered onto a common high-resolution grid, low-resolution input images should be carefully chosen so that the registration errors can be carefully considered. In this paper, the statistics obtained from the motion-compensated low-resolution images are utilized to evaluate the feasibility of the input image candidates. Maximum motion-compensation error is estimated from the high-resolution image observation model. U the motion-compensation error of the input image candidate is greater than the estimated maximum motion-compensation error, the input image candidate is discarded. The number of good input image candidates and the statistics of the motion-compensation errors are used to choose final input images. The final input images chosen from the input image selection block are given to the following high-resolution image reconstruction block. It is expected that the proposed method is utilized to extract a good high-resolution image efficiently from a low-resolution video without any user intervention.

A Study on the Video Quality Improvement of National Intangible Cultural Heritage Documentary Film (국가무형문화재 기록영상 화질 개선에 관한 연구)

  • Kwon, Do-Hyung;Yu, Jeong-Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.439-441
    • /
    • 2020
  • 본 논문에서는 국가무형문화재 기록영상의 화질 개선에 관한 연구를 진행한다. 기록영상의 화질 개선을 위해 SRGAN 기반의 초해상화 복원영상 생성 프레임워크의 적용을 제안한다. Image aumentation과 median filter를 적용한 데이터셋과 적대적 신경망인 Generative Adversarial Network (GAN)을 기반으로 딥러닝 네트워크를 구축하여 입력된 Low-Resolution 이미지를 통해 High-Resolution의 복원 영상을 생성한다. 이 연구를 통해 국가무형문화재 기록영상 뿐만 아니라 문화재 전반의 사진 및 영상 기록 자료의 품질 개선 가능성을 제시하고, 영상 기록 자료의 아카이브 구축을 통해 지속적인 활용의 기초연구가 되는 것을 목표로 한다.

  • PDF

Video Super-Resolution via Self-Supervised Adaptation (자기 지도 적응을 통한 동영상 초해상도 기법)

  • Yoo, Jinsu;Kim, Tae Hyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.313-314
    • /
    • 2021
  • 최근 많은 단일 영상 초해상도 네트워크에서 입력 저 화질 영상 자체의 내부 정보를 테스트 타임에 이용하여 파라미터를 업데이트하는 방법을 통해 높은 성능 향상을 이루어냈다. 본 원고에서는, 해당 방법에서 더 나아가 동영상 초해상도네트워크의 파라미터를 테스트 타임의 저 화질 영상만을 가지고 업데이트 하는 기법을 소개한다. 첫째로, 동영상 내에 일반적으로 존재하는 반복되는 패치의 특성을 분석하고, 다음으로 기존의 복원된 동영상을 관찰하여 자기 지도 적응의 가능성을 보인다. 마지막으로, 폭넓은 실험을 통해 제안하는 기법을 검증한다.

  • PDF