Super resolution image reconstruction method refers to image processing algorithms that produce a high resolution(HR) image from observed several low resolution(LR) images of the same scene. This method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, such as satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. In this paper we applied super resolution reconstruction method in spatial domain to video sequences. Test images are adjacently sampled images from continuous video sequences and overlapped for high rate. We constructed the observation model between the HR images and LR images applied by the Maximum A Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from low resolution images and compared the results with those from other known interpolation methods.
Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum APosteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권1호
/
pp.232-248
/
2014
A series of kernel regression (KR) algorithms, such as the classic kernel regression (CKR), the 2- and 3-D steering kernel regression (SKR), have been proposed for image and video super-resolution. In existing KR frameworks, a single algorithm is usually adopted and applied for a whole image/video, regardless of region characteristics. However, their performances and computational efficiencies can differ in regions of different characteristics. To take full advantage of the KR algorithms and avoid their disadvantage, this paper proposes a kernel regression framework for video super-resolution. In this framework, each video frame is first analyzed and divided into three types of regions: flat, non-flat-stationary, and non-flat-moving regions. Then different KR algorithm is selected according to the region type. The CKR and 2-D SKR algorithms are applied to flat and non-flat-stationary regions, respectively. For non-flat-moving regions, this paper proposes a similarity-assisted steering kernel regression (SASKR) algorithm, which can give better performance and higher computational efficiency than the 3-D SKR algorithm. Experimental results demonstrate that the computational efficiency of the proposed framework is greatly improved without apparent degradation in performance.
초해상도 영상복원은 동일 지역을 촬영한 여러 장의 저해상도 영상을 이용하여 고해상도의 영상으로 재구성하는 영상처리 알고리즘 기법이다. 이 기법은 위성영상, 비디오 감시, 영상 강조 및 복원, 영상 모자이킹, 의료 영상과 같이 여러 장의 프레임 영상을 획득할 수 있는 분야에서 유용하게 사용될 수 있다. 본 연구에서는 지상을 촬영한 비디오 영상 열에 공간영역 초해상도 기법을 적용하였다. 실험에 사용된 영상은 높은 중복도로 촬영된 연속적인 비디오 영상에서 부표본화되었으며, 저해상도 영상과 고해상도 영상간의 관측 모델을 구성하고 초해상도 영상복원 기법중의 하나인 MAP 알고리즘을 적용하였다. MAP 기법을 이용하여 여러 장의 저해상도 영상에서 고해상도 영상으로 복원하였으며, 그 결과를 기존의 영상보간 방법들과 비교하였다.
매우 제한된 전송 대역을 이용하여 비디오 데이터를 전송해야 하는 필요성은, 광대역을 통한 비디오 서비스가 활성화되어 있는 현 시점에서도 꾸준히 존재한다. 본 논문에서는 초협대역 네트워크를 통한 저해상도 비디오 전송을 위해, 공간 확장형 스케일러블 비디오 코딩 프레임워크에서 기본 계층의 부호화된 프레임을 심층 신경망 기반 초해상화 기법을 이용하여 업스케일링 하여 향상 계층 부호화 시에 예측 영상으로 활용하여 부호화 효율을 높이는 방법을 제안한다. 기존의 스케일러블 HEVC (High efficiency video coding) 표준에서는 고정된 필터로 업스케일링을 하는데 비해, 본 논문에서는 초해상화 수행을 위해 학습된 심층신경망을 기존의 고정 업스케일링 필터를 대체하여 적용하는 스케일러블 비디오 코딩 프레임워크를 제안한다. 이를 위해 스킵 연결과 잔차 학습 기법 등이 적용된 심층 콘볼루션 신경망 구조를 제안하고, 비디오 코딩 프레임워크의 실제 응용 상황에 맞추어 학습시켰다. 입력 해상도가 $352{\times}288$이고 프레임율이 8fps인 영상을 110kbps로 부호화 하는 응용 상황에서, 기존의 스케일러블 HEVC 프레임워크에 비해 제안하는 스케일러블 비디오 코딩 프레임워크의 화질이 더 높고 부호화 효율이 우수함을 확인할 수 있었다.
영상의 해상도가 빠른 속도로 증가하기 때문에 계속된 전송 대역폭의 증가에도 불구하고 여전히 효과적인 영상 압축 방법에 대한 연구의 요구가 계속 되고 있다. 이와 같은 요구를 충족하기 위해서 영상의 해상도를 줄인 뒤 압축하여 전송한 뒤에 복원 시에 초해상화 기법을 사용하여 원 해상도로 복원하는 방법에 대한 연구가 제안되었다. 이 방법은 입력 영상의 해상도를 낮추기 때문에 동일한 크기로 압축한다고 할 때, 픽셀 당 비트의 수가 증가되어 영상 압축에서 발생되는 손실을 줄여 복원 영상을 화질을 높일 수 있다. 하지만, 이러한 초해상화를 이용한 비디오 압축 방법의 경우 모든 목표 전송 대역에서 효과적인 것이 아니다. 영상 해상도를 줄이면서 발생되는 손실의 크기와 압축에서 발생되는 손실의 크기를 비교해서 영상 압축에서 발생되는 왜곡이 더 큰 경우에만 기존 압축 성능보다 향상된 결과를 얻을 수 있다. 특히, HEVC의 경우 이전의 표준 압축에 비해 상당히 높은 압축 성능을 가지고 있기 때문에 압축 왜곡이 더 커지는 경우가 상당히 저 대역폭 전송 에서만 생기는 것을 실험적으로 확인할 수 있었다. 본 논문에서는 다양한 영상에서 HEVC 기반 초해상화를 이용한 비디오 코딩을 적용해보고 효과적으로 적용될 수 있는 목표 대역폭을 측정해보았다.
Seonghwan Park;Junsik Kim;Yonghae Hwang;Doug Young Suh;Kyuheon Kim
Journal of Web Engineering
/
제21권2호
/
pp.425-442
/
2021
Media technology has been developed to give users a sense of immersion. Recent media using 3D spatial data, such as augmented reality and virtual reality, has attracted attention. A point cloud is a data format that consists of a number of points, and thus can express 3D media using coordinates and color information for each point. Since a point cloud has a larger capacity than 2D images, a technology to compress the point cloud is required, i.e., standardized in the international standard organization MPEG as a video-based point cloud compression (V-PCC). V-PCC decomposes 3D point cloud data into 2D patches along orthogonal directions, and those patches are placed into a 2D image sequence, and then compressed using existing 2D video codecs. However, data loss may occur while converting a 3D point cloud into a 2D image sequence and encoding this sequence using a legacy video codec. This data loss can cause deterioration in the quality of a reconstructed point cloud. This paper proposed a method of enhancing a reconstructed point cloud by applying a super resolution network to the 2D patch image sequence of a 3D point cloud.
본 논문에서는 이산 웨이블릿 변환(discrete wavelet transform: DWT)을 이용한 단일영상 기반의 초고해상도 기법(super-resolution)과, 복수영상 기반의 초고해상도 기법을 제시하고 두 기법을 혼합한 새로운 초고해상도 기법 기법을 제안한다. 기존의 단일 영상 기반의 초고해상도 기법의 경우 처리 시간이 빠르다는 장점이 있으나 영상 보간 시 사용할 수 있는 정보량이 제한적이다. 또한 기존 복수영상 기반의 초고해상도 기법은 단일 영상을 사용했을 경우보다 영상의 보간 시 많은 정보를 사용할 수 있으나 영상의 내용에 따라 기법의 적용이 제한적이고, 컷(cut)의 경계 부근에서 기법의 성능이 매우 떨어지는 단점이 있다. 제안된 기법에서는 컷 검출(cut-detection) 기법을 통해 각 장면의 경계부근에서 적응적으로 단일영상 기반의 초고해상도 기법을 사용한다. 또한 움직임 벡터의 정규화 및 블록 단위의 윤곽선(edge) 패턴 분석을 통해 여러 제한조건에 강한 복수 영상 기반의 초고해상도 기법을 제안한다. 실험을 통하여 제안된 기법이 객관적, 주관적으로 기존의 기법보다 우수한 성능을 보이는 것을 확인하였다.
최근 대부분의 디지털 이미지 응용분야에서는 영상 처리 및 분석을 위해 고해상도 이미지나 비디오가 요구되고 있다. 한편, 일반적인 영상획득시스템으로부터 획득한 영상신호는 획득하는 과정에서 물리적 영향, 제조 기술의 한계 및 환경적인 영향 등으로 인하여 영상의 화질 저하를 가져온다. 이러한 문제를 해결하기위해 연구되고 있는 방법 중 하나인 초해상도 복원 기술은 동일한 물체를 촬영한 다수의 저해상도 영상으로 고해상도 영상을 만들어내는 영상복원기술이다. 본 논문에서는 S&A (Shift & Add) 방법에 POCS (Projection onto Convex Sets) 이론을 적용하여 기존의 방법보다 개선된 알고리즘을 제안한다. 기존의 알고리즘은 잡음에 약하다는 문제점이 있다. 이를 해결하기 위해 제안한 방법에서는 복원단계에 사용되는 참조영상을 POCS이론에 적용하여 기존의 S&A방법과 결합하였다. 또한 광학적 왜곡에 해당하는 카메라 블러(blur) 연산자로 주파수 영역에서 BLPF (Butterworth Low-pass Filter)를 사용하여 기존방법의 문제점인 링잉현상을 해결하였다. 실험결과를 통해 잡음에 강하고 영상의 고주파영역을 향상시킨 제안한 초해상도 방법의 우수성을 확인하였고, 객관적 평가를 위해 기존의 방법과 PSNR (peak signal to noise ratio)을 비교하였다.
미디어 기술은 사용자가 더욱 몰입감을 느낄 수 있는 방향으로 개발되어 왔다. 이러한 흐름에 따라 기존의 2D 이미지에 비해 깊이감을 느낄 수 있는 증강 현실, 가상 현실 등 3D 공간 데이터를 활용하는 미디어가 주목을 받고 있다. 포인트 클라우드는 수많은 3차원 좌표를 가진 여러 개의 점들로 구성된 데이터 형식이므로 각각의 점들에 대한 좌표 및 색상 정보를 사용하여 3D 미디어를 표현한다. 고정된 크기의 해상도를 갖는 2D 이미지와 다르게 포인트 클라우드는 포인트의 개수에 따라 용량이 유동적이며, 이를 기존의 비디오 코덱을 사용하여 압축하기 위해 국제 표준기구인 MPEG(Moving Picture Experts Group)에서는 Video-based Point Cloud Compression (V-PCC)을 제정하였다. V-PCC는 3D 포인트 클라우드 데이터를 직교 평면 벡터를 이용하여 2D 패치로 분해하고 이러한 패치를 2D 이미지에 배치한 다음 기존의 2D 비디오 코덱을 사용하여 압축한다. 본 논문에서는 앞서 설명한 2D 패치 이미지에 super resolution network를 적용함으로써 3D 포인트 클라우드의 성능 향상하는 방안을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.