• Title/Summary/Keyword: video object extraction

Search Result 111, Processing Time 0.029 seconds

Video Object Extraction in Compressed Domain (압축영역의 비디오 객체 추출)

  • Kim, Dong-Wook;Kim, Jin-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.123-127
    • /
    • 2005
  • This paper addresses the problem of extracting video objects from compressed video signals. Compressed videos include several informations about moving objects. An useful cue for object segmentation is motion vector per macroblock which sparse in MPEG. We propose a method for automatically estimating and extracting moving objects using motion vectors of macroblocks in this work.

A Reference Frame Selection Method Using RGB Vector and Object Feature Information of Immersive 360° Media (실감형 360도 미디어의 RGB 벡터 및 객체 특징정보를 이용한 대표 프레임 선정 방법)

  • Park, Byeongchan;Yoo, Injae;Lee, Jaechung;Jang, Seyoung;Kim, Seok-Yoon;Kim, Youngmo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1050-1057
    • /
    • 2020
  • Immersive 360-degree media has a problem of slowing down the video recognition speed when the video is processed by the conventional method using a variety of rendering methods, and the video size becomes larger with higher quality and extra-large volume than the existing video. In addition, in most cases, only one scene is captured by fixing the camera in a specific place due to the characteristics of the immersive 360-degree media, it is not necessary to extract feature information from all scenes. In this paper, we propose a reference frame selection method for immersive 360-degree media and describe its application process to copyright protection technology. In the proposed method, three pre-processing processes such as frame extraction of immersive 360 media, frame downsizing, and spherical form rendering are performed. In the rendering process, the video is divided into 16 frames and captured. In the central part where there is much object information, an object is extracted using an RGB vector per pixel and deep learning, and a reference frame is selected using object feature information.

Visual Semantic Based 3D Video Retrieval System Using HDFS

  • Ranjith Kumar, C.;Suguna, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3806-3825
    • /
    • 2016
  • This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose we intent to hitch on BOVW and Mapreduce in 3D framework. Here, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and produce results .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we fiture the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

A Hierarchical Image Mosaicing using Camera and Object Parameters for Efficient Video Database Construction (효율적인 비디오 데이터베이스 구축을 위해 카메라와 객체 파라미터를 이용한 계층형 영상 모자이크)

  • 신성윤;이양원
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.2
    • /
    • pp.167-175
    • /
    • 2002
  • Image Mosaicing creates a new image by composing video frames or still images that are related, and performed by arrangement, composition and redundancy analysis of images. This paper proposes a hierarchical image mosaicing system using camera and object parameters far efficient video database construction. A tree-based image mosiacing has implemented for high-speed computation time and for construction of static and dynamic image mosaic. Camera parameters are measured by using least sum of squared difference and affine model. Dynamic object detection algorithm has proposed for extracting dynamic objects. For object extraction, difference image, macro block, region splitting and 4-split detection methods are proposed and used. Also, a dynamic positioning method is used for presenting dynamic objects and a blurring method is used for creating flexible mosaic image.

  • PDF

Region-Based Video Object Extraction Using Potential of frame - Difference Energies (프레임차 에너지의 전위차를 이용한 영역 기반의 비디오 객체 추출)

  • 곽종인;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.268-275
    • /
    • 2002
  • This paper proposes a region-based segmentation algorithm fur extracting a video object by using the cost of potential of frame-difference energies. In the first step of a region-based segmentation using spatial intensity, each frame is segmented into a partition of homogeneous regions finely so that each region does not contain the contour of a video object. The fine partition is used as an initial partition for the second step of spatio-temporal segmentation. In spatio-temporal segmentation, the homogeneity cost for each pair of adjacent regions is computed which reflects the potential between the frame-difference energy on the common contour and the frame-difference energy of the lower potential region of the two. The pair of adjacent regions whose cost is minimal then is searched. The two regions of minimum cost ale merged, which result in updating the partition. The merging is recursively performed until only the contours remain which have Same difference energies of high potential. In the fecal step of post-processing, the video object is extracted removing the contours inside the object.

POSE-VIWEPOINT ADAPTIVE OBJECT TRACKING VIA ONLINE LEARNING APPROACH

  • Mariappan, Vinayagam;Kim, Hyung-O;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.20-28
    • /
    • 2015
  • In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.

Moving Object Extraction and Relative Depth Estimation of Backgrould regions in Video Sequences (동영상에서 물체의 추출과 배경영역의 상대적인 깊이 추정)

  • Park Young-Min;Chang Chu-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.247-256
    • /
    • 2005
  • One of the classic research problems in computer vision is that of stereo, i.e., the reconstruction of three dimensional shape from two or more images. This paper deals with the problem of extracting depth information of non-rigid dynamic 3D scenes from general 2D video sequences taken by monocular camera, such as movies, documentaries, and dramas. Depth of the blocks are extracted from the resultant block motions throughout following two steps: (i) calculation of global parameters concerned with camera translations and focal length using the locations of blocks and their motions, (ii) calculation of each block depth relative to average image depth using the global parameters and the location of the block and its motion, Both singular and non-singular cases are experimented with various video sequences. The resultant relative depths and ego-motion object shapes are virtually identical to human vision.