• Title/Summary/Keyword: vibrational motion

Search Result 133, Processing Time 0.028 seconds

Molecular Dynamics Simulation Study of Density Effects on Vibrational Dephasing in Diatomic Molecular Liquid $N_2$

  • Kwang-Jin Oh;Seung-Joon Jeon;Eok Kyun Lee;Tae Jun Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.118-122
    • /
    • 1994
  • Molecular dynamics simulation was carried out to study density effects on vibrational dephasing. Because of difficulty due to large time scale difference between vibrational motion and vibrational relaxation, we adopt adiabatic approximation in which the vibrational motion is assumed to be much faster than translational and rotational motion. As a result, we are able to study vibrational dephasing by simulating motion of rigid molecules. It is shown that the dephasing time is decreased as density increases and the contribution to this result is mainly due to the mean-squared frequency fluctuation.

Vibrational Structure and Predissociation of Ar-CO2 by CO2 Symmetric Stretching Mode Coupled with Ar Motion

  • Jung, Jae-Hoon;Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.245-252
    • /
    • 2002
  • The computationally simple quantum mechanical method (VSCF-DWB-IOS) has been applied to studying the Ar-$CO_2$ vibrational predissociation phenomenon. The new methodology utilizes the vibrational self-consistent field method to determine the vibrational structure of the van der Waals complex, the distorted-wave Born approximation for dissociating process, and the infinite-order sudden approximation for the continuum dissociating product of $CO_2$. The dissociation due to the coupling of the symmetric stretching vibrational motion of $CO_2$ with the motion of the Ar van der Waals mode has been extensively investigated. The lifetimes of transient excited vibrational states, linewidths of absorption peak, and the rotational state distributions of the product, $CO_2$ have been computed. It has been found that the lifetime of the Ar-$CO_2$ in excited vibrational state is very long compared with that of triatomic van der Waals complexes and the product $CO_2$ carries a major portion of dissociation energy as a rotational energy.

Effects of parameters of a linear dynamic vibration absorber on the vibrational characteristics of damped vibrational systems (선형동흡진기의 매개변수가 감쇠진동계의 진동특성에 미치는 영향)

  • Yoon, Jang-Sang;Lee, Yang-U;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.136-144
    • /
    • 1989
  • This paper presents the vibrational characteristics of linear damped vibrational systems with a linear dynamic absorber. The amplitude ratios of main vibrational system are derived from the equation of motion for the system, and optimal natural frequency ratio and damping ratio of dynamic absorber are obtained by computer simu- lation, which minimize the amplitude ratio of main vibrational system for the whole range of the frequency ratio. And, the effects of the parameters on the amplitude ratios are investigated. As the results, the effect of the natural frequency ratio on the amplitude ratio of main vibrational system is more important than that of the damping ratio of dynamic absorber as damping ratio of main vibrational system becomes larger. For the case of large damping ration of main vibrational system becomes larger. For the case of large damping ratio of main vibration system, the amplitude ratios are not decreased dramationally in spite of inoreasing mass ratio.

  • PDF

Program Development for Vibration Performance Evaluation of Powder Transfer Equipment

  • Lee, Hyoung-Woo;Ryu, Jeong-Hyeon;Park, Noh-Gill
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.60-65
    • /
    • 2006
  • A vibrational model of powder transfer equipment based on the lumped parameter method was developed, in which the operating motion consists of surging, bouncing, and pitching. After decoupling the equation of motion, the vibrational excitation source of the pitching motion was removed. So the designers are able to plan the optimum design to adjust the motion trajectory of the powder transfer equipment. That is, a procedure to adjust the motion trajectory of powder transfer equipment by changing design specifications such as the installation position, the direction of the motor, the driving speed, the mass unbalance, the stiffness coefficient, and the installation position of the support spring, is presented in this paper. The powder transfer equipment manufactured according to the results of this study did not suffer fatigue destruction, since the maximum stress on the basket structure was sufficiently small.

Portable Calibration System for Displacement Measuring Sensors

  • Eom, Tae-Bong;Lee, Jae-Yun;Kim, Jae-Wan;Joon, Lyou
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.56-59
    • /
    • 2006
  • A vibrational model of powder transfer equipment based on the lumped parameter method was developed, in which the operating motion consists of surging, bouncing, and pitching. After decoupling the equation of motion, the vibrational excitation source of the pitching motion was removed. So the designers are able to plan the optimum design to adjust the motion trajectory of the powder transfer equipment. That is, a procedure to adjust the motion trajectory of powder transfer equipment by changing design specifications such as the installation position, the direction of the motor, the driving speed, the mass unbalance, the stiffness coefficient, and the installation position of the support spring, is presented in this paper. The powder transfer equipment manufactured according to the results of this study did not suffer fatigue destruction, since the maximum stress on the basket structure was sufficiently small.

Active Control of Vibrational Intensity in a Compound Vibratory System (복합진동계의 진동 인텐시티 능동 제어)

  • Kim, Gi-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.109-118
    • /
    • 2002
  • The vibrational intensity and the dynamic response of a compound vibratory system had been controlled actively by means of a feedforward control method. A compound vibratory system consists of a flexible beam and two discrete systems - a vibrating source and a dynamic absorber. By considering the interactive motions between discrete systems and a flexible beam, the equations of motion for a compound vibratory system were derived using a method of variation of parameters. To define the optimal conditions of a controller the cost function, which denotes a time averaged power flow, was evaluated numerically. The possibility of reductions of both of vibrational intensity and dynamic response at a control point located at a distance from a source were fecund to depend on the positions of a source, a control point and a controller. Especially the presence of a dynamic absorber gives the more reduction on the dynamic response but the less on the vibrational intensity than those without a dynamic absorber.

Effects of coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness on wind-excited tall buildings

  • Thepmongkorn, S.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.61-80
    • /
    • 2002
  • Wind tunnel aeroelastic model tests of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building were conducted using a three-degree-of-freedom base hinged aeroelastic(BHA) model. Experimental investigation into the effects of coupled translational-torsional motion, cross-wind/torsional frequency ratio and eccentricity between centre of mass and centre of stiffness on the wind-induced response characteristics and wind excitation mechanisms was carried out. The wind tunnel test results highlight the significant effects of coupled translational-torsional motion, and eccentricity between centre of mass and centre of stiffness, on both the normalised along-wind and cross-wind acceleration responses for reduced wind velocities ranging from 4 to 20. Coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness also have significant impacts on the amplitude-dependent effect caused by the vortex resonant process, and the transfer of vibrational energy between the along-wind and cross-wind directions. These resulted in either an increase or decrease of each response component, in particular at reduced wind velocities close to a critical value of 10. In addition, the contribution of vibrational energy from the torsional motion to the cross-wind response of the building model can be greatly amplified by the effect of resonance between the vortex shedding frequency and the torsional natural frequency of the building model.

Molecular Dynamics Simulation Studies of Zeolite A. Ⅵ. Vibrational Motion of Non-Rigid Zeolite-A Framework

  • 이송희;최상구
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.422-428
    • /
    • 1998
  • In the present paper, we report a molecular dynamics (MD) simulation of non-rigid zeolite-A framework only as the base case for a consistent study of the role of intraframework interaction on several zeolite-A systems using the same technique in our previous studies of rigid zeolite-A frameworks. Usual bond stretching, bond angle bending, torsional rotational, and non-bonded Lennard-Jones and electrostatic interactions are considered as intraframework interaction potentials. The comparison of experimental and calculated structural parameters confirms the validity of our MD simulation for zeolite-A framework. The radial distribution functions of non-rigid zeolite-A framework atoms characterize the vibrational motion of the framework atoms. Mean square displacements are all periodic with a short period of 0.08 ps and a slow change in the amplitude of the vibration with a long period of 0.53 ps. The displacement auto-correlation (DAC) and neighbor-correlation (DNC) functions describe the up-and-down motion of the framework atoms from the center of α-cage and the back-and-forth motion on each ring window from the center of each window. The DAC and DNC functions of the framework atoms from the center of α-cage at the 8-ring windows have the same period of the up-and-down motion, but those functions from the center of 8-ring window at the 8-ring windows are of different periods of the back-and-forth motion.

Molecular Vibrational Study of the Allosteric Effect in 2,2'-Bipyridyl Crown Ether (분자진동방법을 사용한 2, 2'-Bipyridyl Crown Ether 의 다른자리 입체성 효과에 관한 연구)

  • Wan Kyu Kim;Soon Ryang Chung
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.205-212
    • /
    • 1985
  • By using the Mass-Weighted-Cartesian coordinate method, the allosteric effect of 2,2'-bipyridyl crown(4) ether is studied. The vibrational modes of 235, 234, 188, and 178cm$^{-1}$ belong to the pore opening motion of crown ether and those of 168, 104, and 67cm$^{-1}$ belong to the rotational vibration motion of bipyridyl. Especially the mode appearing at 178cm$^{-1}$ shows a large allosteric effect by activation of the allosteric site.

  • PDF

Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory

  • Balubaid, Mohammed;Tounsi, Abdelouahed;Dakhel, B.;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.579-586
    • /
    • 2019
  • In this research paper, the free vibrational behavior of the simply supported FG nano-plate is studied using the nonlocal two variables integral refined plate theory. The present model takes into account the small scale effect. The effective's properties of the plate change according to the power law variation (P-FGM). The equations of motion of the system are determined and resolved via Hamilton's principle and Navier procedure, respectively. The validity and efficiency of the current model are confirmed by comparing the results with those given in the literature. At the last section, several numerical results are presented to show the various parameters influencing the vibrational behavior such as the small-scale effect, geometry ratio, material index and aspect ratio.