• Title/Summary/Keyword: vibrational control

Search Result 89, Processing Time 0.022 seconds

Optimal control and design of composite laminated piezoelectric plates

  • ALamir, ALhadi E.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1177-1202
    • /
    • 2015
  • The present paper is concerned with the optimal control and/or design of symmetric and antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem, Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty functional including the control force. Simultaneously with the active control, thicknesses and the orientation angles of layers are taken as design variables to achieve optimum design. The formulation is based on various plate theories for various boundary conditions. Explicit solutions for the control function and controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the effectiveness of the proposed control and design mechanism, and to investigate the effects of various laminate parameters on the control and design process.

A Compliant Contact Control Strategy for Robot Manipulators with Unknown Environment

  • Kim, Byoung-Ho;Chong, Nak-Young;Oh, Sang-Rok;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.20-25
    • /
    • 1998
  • This paper proposes a new compliant contact control strategy for the robot manipulators accidentally interacting with an unknown environment. The main features of the proposed method are summarized as follows: First, each entry in the diagonal stiffness matrix corresponding to the task coordinate in Cartesian space is adaptively adjusted during con-tact along the corresponding axis based on the contact force with its environment. Second, it can be used for both unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end effector. Third, the adjusted stiffness gains are automatically recovered to initially specified stiffness gains when the task is changed from constrained motion to unconstrained motion. The simulation results show the effectiveness of the proposed method by employing a two-link direct drive manipulator interacting with an unknown environment.

  • PDF

Modeling and Vibration Control of High-rise Buildings Using $H_2$ and TEX>$H_\infty$ Control Theories

  • Hayase, Minoru;Arifin, Muhidin;Moran, Antonio;Shimakage, Masayasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.123-128
    • /
    • 1994
  • This paper analyzes the dynamical modeling of high-rise building and the design of control systems for suppressing undesired vibrational motion at the top of the building originated by natural disturbances such as earthquakes, wind, etc. The control system is designed according to H$_{2}$ and H$_{\infty}$ robust control theories. The performance of the building with H$_{\infty}$ controller is analyzed in the time and frequency domains and the vibration isolation and robustness properties of H$_{\infty}$ and H$_{2}$ control systems are examined and compared. The design procedure, structure and properties of H$_{\infty}$ controllers are analyzed.zed.

  • PDF

Electroplating process for the chip component external electrode

  • Lee, Jun-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1-2
    • /
    • 2000
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the onventional rotating barrel, vibrational barrel(vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components. The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed thatbthe average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value. Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components. However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. 2H20 + e $\rightarrow$M/TEX> 20H + H2.. Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure there by resulting to bad plating condition.

  • PDF

A CMOS Interface Circuit with MPPT Control for Vibrational Energy Harvesting (진동에너지 수확을 위한 MPPT 제어 기능을 갖는 CMOS 인터페이스 회로)

  • Yang, Min-jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.412-415
    • /
    • 2015
  • This paper presents a MPPT(Maximum Power Point Tracking) control CMOS interface circuit for vibration energy harvesting. The proposed circuit consists of an AC-DC converter, MPPT Controller, DC-DC boost converter and PMU(Power Management Unit). The AC-DC converter rectifies the AC signals from vibration devices(PZT). MPPT controller is employed to harvest the maximum power from the PZT and increase efficiency of overall system. The DC-DC boost converter generates a boosted and regulated output at a predefined level and provides energy to load using PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a schottky diode type DC-DC boost converter is used for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process. The chip area is $950um{\times}920um$.

  • PDF

A Compliance Control Method for Robot Manipulators Using Nonlinear Stiffness Adaptation (비선형 강성 조절 방법을 이용한 로봇 매니퓰레이터의 컴플라이언스 제어 방법)

  • Kim, Byoyng-Ho;Oh, Sang-Rok;Suh, Il-Hong;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.703-709
    • /
    • 2000
  • This paper proposes a compliance control strategy for the robot manipulators accidentally interact-ing with an unknown environment. In this proposed method each in the diagonal stiffness matrix corre-sponding to the task coordinate in a Cartesian space is adaptively adjusted during contact along the corresponding axis based on the contact force with its environment. This method can be used for both unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end-effector. The experimental results show the effectiveness of the proposed method by employing a two link direct drive manipulator interacting with an unknown environment.

  • PDF

Vibration Control of a Single-wheel Robot Using a Filter Design (필터 설계를 통한 한 바퀴 구동 로봇의 진동 제어)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.863-868
    • /
    • 2015
  • In this paper, the vibration of a single-wheel mobile robot is minimized by designing a filter. An AHRS (Attitude and heading reference system) sensor is used for measuring the state of the robot. The measured signals are analyzed using the FFT method to investigate the fundamental vibrational frequency with respect to the flywheel's speed of the gimbal system. The IIR notch filter is then designed to suppress the vibration at the identified frequency. After simulating the performance of the designated filter using the measured sensor data through extensive experiments, the filter is actually implemented in a single-wheel mobile robot, GYROBO. Finally, the performance of the designed filter is confirmed by performing the balancing control task of the GYROBO system.

Multiobjective State-Feedback Control of Beams with Piezoelectric Device (압전체가 부착된 보의 다목적 상태궤한제어)

  • Park, Chul-Hue;Hong, Seong-Il;Park, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.828-833
    • /
    • 2004
  • The performance of a mixed $H_{\infty}/H_2$ design with pole placement constraints based on robust vibration control for a piezo/beam system is investigated. The governing equation of motion for the piezo/beam system is derived by Hamilton's principle. The assumed mode method is used to discretize the governing equation into a set of ordinary differential equation. A robust controller is designed by $H_{\infty}/H_2$ feedback control law that satisfies additional constraints on the closed-loop pole location in the face of model uncertainties, which are derived for a general class of convex regions of the complex plane. These constraints are expressed in terms of linear matrix inequalities (LMIs) approach for the multiobjective synthesis. The validity and applicability of this approach for vibration suppressions of SMART structural systems are discussed by damping out the multiple vibrational modes of the piezo/beam system.

  • PDF

Vibration Control of Telescopic Handler Using Time Delay Control and Commandless Input Shaping Technique (시간지연제어기법과 무지령 입력다듬기기법을 이용한 텔레스코픽 핸들러의 진동 제어)

  • Jang, Pyeong-Hun;Park, Jun-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1097-1106
    • /
    • 2001
  • A telescopic handless is a kind of construction machinery for loading, carrying and unloading various cargos. A residual vibration of the boom, however, is often caused in carrying cargos to high workplace, especially in small motion and unloading operations, even when an expert of this machine handless the boom. To solve this vibrational problem, we applied TDC and newly proposed Commandless IST to the telescopic handler, and confirmed their effectiveness through experiments. These promising results show that the proposed control schemes can improve productivity, safety and ride comfort of the telescopic handler.

Active Control of Forced Vibrations in Smart Laminated Composite Plates Using Piezoceramics (압전세라믹을 이용한 지능 복합적층판의 강제진동의 능동제어)

  • 강영규;구근회;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.193-199
    • /
    • 2001
  • Active control of forced vibration of the cantilevered laminated composite plates using collocated piezoceramic sensor/actuator is analyzed numerically and verified experimentally for various fiber orientations. Impact on the stiffness and the damping properties is studied by varying stacking sequence of [$\theta$$_{4}$O$_{2}$90$_{2}$]s for the laminated composite plate. For the forced vibration control, the plate is excited by one pair of collocated PZT exciters in resonance and its vibrational response is suppressed by the other collocated PZT sensor/actuator using direct negative velocity feedback. It is shown that the active control of forced vibration is more effective for the smart laminated plate with higher modal damped stiffness(2ζ$\omega$/aup 2/) .

  • PDF