• 제목/요약/키워드: vibration-based methods

검색결과 614건 처리시간 0.027초

Review and Evaluation of Hand-Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

  • Dong, Ren G.;Sinsel, Erik W.;Welcome, Daniel E.;Warren, Christopher;Xu, Xueyan S.;McDowell, Thomas W.;Wu, John Z.
    • Safety and Health at Work
    • /
    • 제6권3호
    • /
    • pp.159-173
    • /
    • 2015
  • The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.

Vibration control laws via shunted piezoelectric transducers: A review

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chen, JinJin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.1-19
    • /
    • 2014
  • Attaching a piezoelectric transducer to a vibrating structure, and shunting it with an electric circuit, gives rise to different passive, semi-passive, and semi-active control techniques. This paper attempts to review the research related to structural vibration control, via passive, semi-passive, and semi-active control methods. First, the existing electromechanical modeling is reviewed, along with the modeling methods. These range from lumped parameters, to distributed parameters modeling of piezostructural systems shunted by electrical networks. Vibration control laws are then discussed, covering passive, semi-passive, and semi-active control techniques, which are classified according to whether external power is supplied to the piezoelectric transducers, or not. Emphasis is placed on recent articles covering semi-passive and semi-active control techniques, based upon switched shunt circuits. This review provides the necessary background material for researchers interested in the growing field of vibration damping and control, via shunted piezostructural systems.

Simulation Techniques for Mid-Frequency Vibro-Acoustics Virtual Tools For Real Problems

  • Desmet, Wim;Pluymers, Bert;Atak, Onur;Bergen, Bart;Deckers, Elke;Huijssen, Koos;Van Genechten, Bert;Vergote, Karel;Vandepitte, Dirk
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.49-49
    • /
    • 2010
  • The most commonly used numerical modelling techniques for acoustics and vibration are based on element based techniques, such as the nite element and boundary element method. Due to the huge computational eorts involved, the use of these deterministic techniques is practically restricted to low-frequency applications. For high-frequency modelling, probabilistic techniques such as SEA are well established. However, there is still a wide mid-frequency range, for which no adequate and mature prediction techniques are available. In this frequency range, the computational eorts of conventional element based techniques become prohibitively large, while the basic assumptions of the probabilistic techniques are not yet valid. In recent years, a vast amount of research has been initiated in a quest for an adequate solution for the current midfrequency problem. One family of research methods focuses on novel deterministic approaches with an enhanced convergence rate and computational eciency compared to the conventional element based methods in order to shift the practical frequency limitation towards the mid-frequency range. Amongst those techniques, a wave based prediction technique using an indirect Tretz approach is being developed at the K.U.Leuven - Noise and Vibration Research group. This paper starts with an outline of the major features of the mid-frequency modelling challenge and provides a short overview of the current research activities in response to this challenge. Next, the basic concepts of the wave based technique and its hybrid coupling with nite element schemes are described. Various validations on two- and threedimensional acoustic, elastic, poro-elastic and vibro-acoustic examples are given to illustrate the potential of the method and its benecial performance as compared to conventional element based methods. A closing part shares some views on the open issues and future research directions.

  • PDF

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

인접건축물의 진동제어를 위한 MR감쇠기의 적용 (Application of MR damper for Vibration Control of Adjacent Buildings)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제12권4호
    • /
    • pp.99-108
    • /
    • 2012
  • In recently, sky-bridge are often applied to high-rised adjacent buildings for pedestrian bridge. the seisnic response control of adjacent buildings have been studied and magneto-rheological(MR) fluid dampers have been applied to seismic response control. In this study, vibration control effect of the MR damper connected adjacent buildings has been investigated. Adjacent building structures with different natural frequencies were used as example structures. Two typed of control methods, displacement based or velocity based, are applied to determinate control force of MR damper. In this numerical analysis, it has been shown that displacement-based control algorithm is more effective than velocity-based control algorithm for seismic response control of adjacent buildings. And, when displacement-based control method is applied to control of adjacent buildings, the control of building occurred large displacement is more efficient in reducing the seismic response.

Comparative review and interpretation of the conventional and new methods in blast vibration analyses

  • Uyar, G. Gulsev;Aksoy, C.O.
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.545-554
    • /
    • 2019
  • The customary approach used in the blast vibration analysis is to derive empirical relations between the peak particle velocities of blast-induced waves and the scaled distance, and to develop patterns limiting the amounts of explosives. During the periods when excavations involving blasting were performed at sites far from residential areas and infrastructure works, this method based on empirical correlations could be effective in reducing vibrations. However, blasting procedures applied by the fast-moving mining and construction industries today can be very close to, in particular cities, residential areas, pipelines, geothermal sites, etc., and this reveals the need to minimize blast vibrations not only by limiting the use of explosives, but also employing new scientific and technological methods. The conventional methodology in minimizing blast vibrations involves the steps of i) measuring by seismograph peak particle velocity induced by blasting, ii) defining ground transmission constants between the blasting area and the target station, iii) finding out the empirical relation involving the propagation of seismic waves, and iv) employing this relation to identify highest amount of explosive that may safely be fired at a time for blasting. This paper addresses practical difficulties during the implementation of this conventional method, particularly the defects and errors in data evaluation and analysis; illustrates the disadvantages of the method; emphasizes essential considerations in case the method is implemented; and finally discusses methods that would fit better to the conditions and demands of the present time compared to the conventional method that intrinsically hosts the abovementioned disadvantages.

A Fiber Spool's Vibration Sensitivity Optimization Based on Orthogonal Experimental Design

  • Jing Gao;Linbo Zhang;Dongdong Jiao;Guanjun Xu;Xue Deng;Qi Zang;Honglei Yang;Ruifang Dong;Tao Liu;Shougang Zhang
    • Current Optics and Photonics
    • /
    • 제8권1호
    • /
    • pp.45-55
    • /
    • 2024
  • A fiber spool with ultra-low vibration sensitivity has been demonstrated for the ultra-narrow-linewidth fiber-stabilized laser by the multi-object orthogonal experimental design method, which can achieve the optimization object and analysis of influence levels without extensive computation. According to a test of 4 levels and 4 factors, an L16 (44) orthogonal table is established to design orthogonal experiments. The vibration sensitivities along the axial and radial directions and the normalized sums of the vibration sensitivities are determined as single objects and comprehensive objects, respectively. We adopt the range analysis of object values to obtain the influence levels of the four design parameters on the single objects and the comprehensive object. The optimal parameter combinations are determined by both methods of comprehensive balance and evaluation. Based on the corresponding fractional frequency stability of ultra-narrow-linewidth fiber-stabilized lasers, we obtain the final optimal parameter combination A3B1C2D1, which can achieve the fiber spool with vibration sensitivities of 10-12/g magnitude. This work is the first time to use an orthogonal experimental design method to optimize the vibration sensitivities of fiber spools, providing an approach to design the fiber spool with ultra-low vibration sensitivity.

공기음 차단성능 평가방법의 고찰 (Investigation on the Evaluation Method of Airborne Sound Insulation in Building and Building Elements)

  • 양관섭;이태강;이근희;김선우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.239-243
    • /
    • 2001
  • In evaluating sound performance of building, it is important to carry on tests and evaluations based upon residential sound performances. Korean Standards include test methods on sound performance, but don't include any code on evaluation methods. Therefore, evaluation methods from Japan or ISO have been used for evaluating sound performance in domestic so far. In this study, every regulation from ISO, JIS, ASTM, especially for airborne sound insulation against building and building element, is analyzed in order to apply to establishment of Korean Standards on a sound performance evaluation method in buildings.

  • PDF

Perspectives and Current Developments for NVH Data Acquisition and Analysis

  • Hobelsberger, Josef
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.439-440
    • /
    • 2012
  • New analysis methods complement classical approaches in the vehicle NVH development by reducing and accelerating iteration steps to obtain a target sound. Therefore, tools are required that allow an integrative approach of sound engineering and structural analysis and enable a precise simulation and modification based on measured data. The Response Modification Analysis (RMA) is such a hybrid solution, which provides indications of relevant transfer paths taking into account the sensitivity of response channels to modifications of reference channels.

  • PDF

반능동 제어 시스템을 이용한 사장케이블의 진동제어 (Vibration Control of Stay Cables Using Semiactive Control System)

  • 장지은;정형조;윤우현;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.57-64
    • /
    • 2004
  • Stay cables, such as are used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. Several methods have been proposed and implemented to mitigate this problem, though each has its limitations. Recently some studies have shown that semiactive dampers can potentially achieve performance levels nearly the same as comparable active devices with few of the detractions. This paper presents the results of a study to evaluate the performance of semiactive dampers for mitigating the vibration of stay cables. Moreover, a number of recently proposed semiactive control algorithms are formulated for use with shear mode MR damper to compare the efficiency of each algorithm through numerical simulation. Numerical simulation considers a stay cable excited by shaker and controlled by shear mode MR dampers. In simulation, the response with a semiactive damper is found to be dramatically reduced compared to the uncontrolled case. Furthermore, it is verified that the algorithm based on Lyapunov control theory is very efficient in mitigating the cable vibration.

  • PDF