• Title/Summary/Keyword: vibration-based damage detection

Search Result 141, Processing Time 0.022 seconds

Health assessment of RC building subjected to ambient excitation : Strategy and application

  • Mehboob, Saqib;Khan, Qaiser Uz Zaman;Ahmad, Sohaib;Anwar, Syed M.
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.185-201
    • /
    • 2022
  • Structural Health Monitoring (SHM) is used to provide reliable information about the structure's integrity in near realtime following extreme incidents such as earthquakes, considering the inevitable aging and degradation that occurs in operating environments. This paper experimentally investigates an integrated wireless sensor network (Wi-SN) based monitoring technique for damage detection in concrete structures. An effective SHM technique can be used to detect potential structural damage based on post-earthquake data. Two novel methods are proposed for damage detection in reinforced concrete (RC) building structures including: (i) Jerk Energy Method (JEM), which is based on time-domain analysis, and (ii) Modal Contributing Parameter (MCP), which is based on frequency-domain analysis. Wireless accelerometer sensors are installed at each story level to monitor the dynamic responses from the building structure. Prior knowledge of the initial state (immediately after construction) of the structure is not required in these methods. Proposed methods only use responses recorded during ambient vibration state (i.e., operational state) to estimate the damage index. Herein, the experimental studies serve as an illustration of the procedures. In particular, (i) a 3-story shear-type steel frame model is analyzed for several damage scenarios and (ii) 2-story RC scaled down (at 1/6th) building models, simulated and verified under experimental tests on a shaking table. As a result, in addition to the usual benefits like system adaptability, and cost-effectiveness, the proposed sensing system does not require a cluster of sensors. The spatial information in the real-time recorded data is used in global damage identification stage of SHM. Whereas in next stage of SHM, the damage is detected at the story level. Experimental results also show the efficiency and superior performance of the proposed measuring techniques.

Effects of local structural damage in a steel truss bridge on internal dynamic coupling and modal damping

  • Yamaguchi, Hiroki;Matsumoto, Yasunao;Yoshioka, Tsutomu
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.523-541
    • /
    • 2015
  • Structural health monitoring of steel truss bridge based on changes in modal properties was investigated in this study. Vibration measurements with five sensors were conducted at an existing Warren truss bridge with partial fractures in diagonal members before and after an emergency repair work. Modal properties identified by the Eigensystem Realization Algorithm showed evidences of increases in modal damping due to the damage in diagonal member. In order to understand the dynamic behavior of the bridge and possible mechanism of those increases in modal damping, theoretical modal analysis was conducted with three dimensional frame models. It was found that vibrations of the main truss could be coupled internally with local vibrations of diagonal members and the degree of coupling could change with structural changes in diagonal members. Additional vibration measurements with fifteen sensors were then conducted so as to understand the consistency of those theoretical findings with the actual dynamic behavior. Modal properties experimentally identified showed that the damping change caused by the damage in diagonal member described above could have occurred in a diagonal-coupled mode. The results in this study imply that damages in diagonal members could be detected from changes in modal damping of diagonal-coupled modes.

Vibration-Based Monitoring of Prestress-Loss in PSC Girder Bridges (PSC 거더교의 진동기반 긴장력 손실 모니터링)

  • Kim, Jeong-Tae;Hong, Dong-Soo;Park, Jae-Hyung;Cho, Hyun-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • A vibration-based monitoring system is newly proposed to predict the loss of prestress forces in prestressed concrete (PSC) girder bridges. Firstly, a global damage alarming algorithm is newly proposed to monitor the occurrence of prestress-loss by using the change in frequency responses. Secondly, a prestress-loss prediction algorithm is selected to estimate the extent of prestress-loss by using the change in natural frequencies. Finally, the feasibility of the proposed system is experimentally evaluated on a scaled PSC girder model for which acceleration responses were measured for several damage scenarios of prestress-loss.

Health monitoring of pressurized pipelines by finite element method using meta-heuristic algorithms along with error sensitivity assessment

  • Amirmohammad Jahan;Mahdi Mollazadeh;Abolfazl Akbarpour;Mohsen Khatibinia
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.211-219
    • /
    • 2023
  • The structural health of a pipeline is usually assessed by visual inspection. In addition to the fact that this method is expensive and time consuming, inspection of the whole structure is not possible due to limited access to some points. Therefore, adopting a damage detection method without the mentioned limitations is important in order to increase the safety of the structure. In recent years, vibration-based methods have been used to detect damage. These methods detect structural defects based on the fact that the dynamic responses of the structure will change due to damage existence. Therefore, the location and extent of damage, before and after the damage, are determined. In this study, fuzzy genetic algorithm has been used to monitor the structural health of the pipeline to create a fuzzy automated system and all kinds of possible failure scenarios that can occur for the structure. For this purpose, the results of an experimental model have been used. Its numerical model is generated in ABAQUS software and the results of the analysis are used in the fuzzy genetic algorithm. Results show that the system is more accurate in detecting high-intensity damages, and the use of higher frequency modes helps to increase accuracy. Moreover, the system considers the damage in symmetric regions with the same degree of membership. To deal with the uncertainties, some error values are added, which are observed to be negligible up to 10% of the error.

A Study on Cepstrum Analysis for Wheel Flat Detection in Railway Vehicles (차륜의 찰상결함 진단을 위한 켑스트럼 분석 방법 연구)

  • Kim, Geoyoung;Kim, Hyuntae;Koo, Jeongseo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.28-33
    • /
    • 2016
  • Since defects in the wheels of railway vehicles, which occur due to wears with the rail, cause serious damage to the running device, the diagnostic monitoring system for condition-based maintenance is required to secure the driving safety. In this paper, we studied to apply a useful Cepstrum analysis to detect periodic structure in spectrum among the vibration signal processing techniques for the fault diagnosis of a rotating body such as wheel. In order to analyze in variations of train velocity, the Cepstrum analysis was performed after a domain change of the vibration signal from time domain to rotation angle domain. When domains change, it is important to use a interpolation for a uniform interval of the rotation angle. Finally, the Cepstrum analysis for wheel flat detection was verified by using the vibration signal including the disturbance resulting from the rail irregularities and the vibration of bogie components.

Performance Enhancement of System Identification Model for Vibration-Based Damage Detection in Flawed Plate-Girder Bridges (결함이 있는 판형교의 진동기초 손상검색을 위한 구조식별모델의 성능향상)

  • 백종훈;김정태;류연선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.443-450
    • /
    • 2003
  • System identification techniques can be used to build a baseline modal model for a flawed structure that has no modal information on its as-built state. The accuracy of a system identification proposed by Stubbs and Kim is analyzed for plate-girder bridges and its impact on the accuracy of damage detection in those structures is also analyzed. A laboratory-scale model plate-girder is experimentally tested and the initial four bending modes are examined for certain damage scenarios. The performance of individual baseline modal models is assessed by detecting damage in the model structure.

  • PDF

Research on the Non-Contact Detection of Internal Defects in a Rail using Ultrasonic Waves (비접촉 초음파 방식의 철도레일 내부결함 검출에 관한 연구)

  • Han, Soon Woo;Cho, Seung Hyun;Kim, Joon Woo;Heo, Tae Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.617-625
    • /
    • 2012
  • Non-contact detection of internal defects in a rail using ultrasonic waves is discussed in this paper. Cracks in a rail may be a cause of a serious railway accident such as derailment if left undetected. Concurrent rail inspection method based on ultrasonic testing using piezoelectric transducers has several limitations as it should keep physical contact with the rail. This work suggests a non-contact detection of internal defects in a rail using ElectroMagnetic Acoustic Transducers (EMAT) which can produce and measure ultrasonic waves in a rail without any couplant. The EMATs for rail inspection are designed and fabricated and their working performance is verified through a series of experiments on various types of internal defects in test rails. The effect of lift-off between the transducers and the rail on the generated signals is also discussed.

  • PDF

Visualization of Delamination Region in Concrete Structures using Mode Shapes of Delaminated Concrete Section (I) : Modal Test (박리된 콘크리트의 진동 모드 형상을 이용한 콘크리트 구조물 박리 손상 영역 가시화 (I) : 모드 시험)

  • Oh, Taekeun;Shin, Sung Woo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.21-26
    • /
    • 2013
  • Delamination of cover concrete due to re-bar corrosion is a critical damage reducing structural safety of reinforced concrete structures. Therefore, it should be detected and evaluated to provide appropriate maintenance to recover structural integrity. Impact-echo method, which utilizes thickness vibration characteristics of delaminated concrete section, is effective for detection and evaluation of small areal size delamination. However, it may not be applicable for large areal size delamination in which flexural vibration modes are dominated. In this study, applicability of vibration mode shapes of delaminated concrete section is investigated for visualization of delamination region in concrete structures. Numerical and experimental modal tests are performed to estimate mode shapes of delaminated concrete section and linear absolute summation technique is proposed for effective visualization of delamination region based on estimated mode shapes.

Multicracks identification in beams based on moving harmonic excitation

  • Chouiyakh, Hajar;Azrar, Lahcen;Alnefaie, Khaled;Akourri, Omar
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1087-1107
    • /
    • 2016
  • A method of damage detection based on the moving harmonic excitation and continuous wavelet transforms is presented. The applied excitation is used as a moving actuator and its frequency and speed parameters can be adjusted for an amplified response. The continuous wavelet transforms, CWT, is used for cracks detection based on the resulting amplified signal. It is demonstrated that this identification procedure is largely better than the classical ones based on eigenfrequencies or on the eigenmodes wavelet transformed. For vibration responses, free and forced vibration analyses of multi-cracked beams are investigated based on both analytical and numerical methodological approaches. Cracks are modeled through rotational springs whose compliances are evaluated using linear elastic fracture mechanics. Based on the obtained forced responses, multi-cracks positions are accurately identified and the CWT identification can be highly improved by adjusting the frequency and the speed excitation parameters.

Damage identification using chaotic excitation

  • Wan, Chunfeng;Sato, Tadanobu;Wu, Zhishen;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.87-102
    • /
    • 2013
  • Vibration-based damage detection methods are popular for structural health monitoring. However, they can only detect fairly large damages. Usually impact pulse, ambient vibrations and sine-wave forces are applied as the excitations. In this paper, we propose the method to use the chaotic excitation to vibrate structures. The attractors built from the output responses are used for the minor damage detection. After the damage is detected, it is further quantified using the Kalman Filter. Simulations are conducted. A 5-story building is subjected to chaotic excitation. The structural responses and related attractors are analyzed. The results show that the attractor distances increase monotonously with the increase of the damage degree. Therefore, damages, including minor damages, can be effectively detected using the proposed approach. With the Kalman Filter, damage which has the stiffness decrease of about 5% or lower can be quantified. The proposed approach will be helpful for detecting and evaluating minor damages at the early stage.