• 제목/요약/키워드: vibration time control

검색결과 798건 처리시간 0.024초

공기압 실린더 고속 구동시스템에서 파라미터 변화에 따른 쿠션성능 비교 (Comparison of Cushion Performance on Parameter Changes in High Speed Pneumatic Cylinder Driving System)

  • 김도태;장중걸
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.54-59
    • /
    • 2015
  • Due to the tendency to use high speed pneumatic cylinders to improve productivity, cushioning devices are adopted to decelerate the piston motion of pneumatic cylinders to reduce noise, vibration, and impact. This paper presents a comparison of the cushion characteristics of a high speed pneumatic cylinder with a relief valve type cushioning device. The system parameters selected are the damping coefficient, Coulomb friction, heat transfer coefficient, and cracking pressure of the relief valve in the air cushioning device. The integral of the time multiplied square error (ITSE) is used to quantitative measure the cushioning performance to assess the effect of varying these. The cushioning performance achieved good results when the ITSE is a minimum value. In a comparison of the piston displacement and velocity with the variations in system parameters, the heat transfer coefficients are not as significantly affected as the other. Also, the cracking pressure of the relief valve is mainly affected by the pressure and temperature in the cushion chamber.

반응표면법을 이용한 6/4극 구조를 갖는 스위치드 릴럭턴스 모터의 토크 리플 저감을 위한 형상 최적설계 (Shape Optimization of a Switched Reluctance Motor Having 6/4 Pole Structure for the Reduction of Torque Ripple Using Response Surface Methodology)

  • 최용권;윤희성;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.608-616
    • /
    • 2006
  • Recently, a switched reluctance motor is widely used in various industries because it has many advantages such as a simple structure, robustness, less maintenance, high torque/weight ratio, and easy speed control over other types of motors. However, a switched reluctance motor inherently produces acoustic noise and vibration caused by torque ripple. Applications of these motors where silent operation is desirable have thus been limited. In this paper, a new stator pole face having a non-uniform air-gap and a pole shoe attached to the lateral face of the rotor pole are suggested in order to minimize torque ripple. The effects of each design parameter are validated using a time-stepping finite element method. The parameters are optimized by utilizing response surface method (RSM) combined with (1+1) evolution strategy. The result shows that the optimized shape gives higher average torque and drastically reduced torque ripple.

피에조 인젝터의 모델링 및 분사율의 추정 (Modeling and Injection Rate Estimation of a Piezo Injector for CRDI Diesel Engines)

  • 김선우;정남훈;선우명호
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.93-100
    • /
    • 2005
  • Stringent emission regulations and increasing demands on reductions of noise and vibration of common rail direct injection (CRDI) diesel engines lead to the advent of piezo-actuated injectors. Compared with solenoid-actuated injectors, piezo-actuated injectors generate greater force and give faster response time, resulting in more accurate and faster injections. The accurate and fast response of an injector can offer an opportunity to control the combustion process and pollutant formation. In this study, the mathematical model of a piezo-actuated injector is developed. An estimator of the injection rate of the piezo-actuated injector is designed based on this model. The sliding mode theory is applied to the estimator design in order to overcome model uncertainties. The injector model and the estimator are verified by the injection experiments in an injector test bench. The simulation and the experimental results show that the proposed sliding mode observer can effectively estimate the injection timing and the injection rate of the piezo-actuated injector.

Fatigue laboratory tests toward the design of SMA portico-braces

  • Carreras, G.;Casciati, F.;Casciati, S.;Isalgue, A.;Marzi, A.;Torra, V.
    • Smart Structures and Systems
    • /
    • 제7권1호
    • /
    • pp.41-57
    • /
    • 2011
  • A deeper understanding of the effectiveness of adopting devices mounting shape memory alloy (SMA) elements in applications targeted to the mitigation of vibrations is pursued via an experimental approach. During a seismic event, less than 1000 loading-unloading cycles of the alloy are required to mitigate the earthquake effects. However, the aging effects during the time of inactivity prior to the oscillations (several decades characterized by the yearly summer-winter temperature wave) should be considered in order to avoid and/or minimize them. In this paper, the results obtained by carrying out, in different laboratories, fatigue tests on SMA specimens are compared and discussed. Furthermore, the effects of seismic events on a steel structure, with and without SMA dampers, are numerically simulated using ANSYS. Under an earthquake excitation, the SMA devices halve the oscillation amplitudes and show re-centering properties. To confirm this result, an experimental campaign is conducted by actually installing the proposed devices on a physical model of the structure and by evaluating their performance under different excitations induced by an actuator.

차량 현가장치 성능향상을 위한 댐퍼 최적화 설계에 대한 연구 (A Study on the Optimization Design of Damper for the Improvement of Vehicle Suspension Performance)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.74-80
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of vehicle. It converting the kinetic energy of the shock into another form of energy, typically heat. In a vehicle, a damper reduce vibration of car, leading to improved ride comfort and running stability. Therefore, a damper is one of the most important components in a vehicle suspension system. Conventionally, the design process of vehicle suspensions has been based on trial and error approaches, where designers iteratively change the values of the design variables and reanalyze the system until acceptable design criteria are achieved. Therefore, the ability to tune a damper properly without trial and error is of great interest in suspension system design to reduce time and effort. For this reason, a many previous researches have been done on modeling and simulation of the damper. In this paper, we have conducted optimal design process to find optimal design parameters of damping force which minimize a acceleration of sprung mass for a given suspension system using genetic algorithm.

Reduced-mass Adaptive TMD for Tall Buildings Damping

  • Weber, Felix;Huber, Peter;Spensberger, Simon;Distl, Johann;Braun, Christian
    • 국제초고층학회논문집
    • /
    • 제8권2호
    • /
    • pp.117-123
    • /
    • 2019
  • Tall buildings are prone to wind-induced vibrations due to their slenderness whereby peak structural accelerations may be higher than the recommended maximum value. The common countermeasure is the installation of a tuned mass damper (TMD) near the highest occupied floor. Due to the extremely large modal mass of tall buildings and because of the narrow to broad band type of wind excitation the TMD mass may become inacceptable large - in extreme cases up to 2000 metric tons. It is therefore a need to develop more efficient TMD concepts which provide the same damping to the building but with reduced mass. The adaptive TMD concept described in this paper represents a solution to this problem. Frequency and damping of the adaptive TMD are controlled in real-time by semi-active oil dampers according to the actual structural acceleration. The resulting enhanced TMD efficiency allows reducing its mass by up to 20% compared to the classical passive TMD. The adaptive TMD system is fully fail-safe thanks to a smart valve system of the semi-active oil dampers. In contrast to active TMD solutions the adaptive TMD is unconditionally stable and its power consumption on the order of 1 kW is negligible small as controllable oil dampers are semi-active devices. The adaptive TMD with reduced mass, stable behavior and lowest power consumption is therefore a preferable and cost saving damping tool for tall buildings.

Mitigation of seismic pounding between two L-shape in plan high-rise buildings considering SSI effect

  • Ahmed Abdelraheem Farghaly;Denise-Penelope N. Kontoni
    • Coupled systems mechanics
    • /
    • 제12권3호
    • /
    • pp.277-295
    • /
    • 2023
  • Unsymmetrical high-rise buildings (HRBs) subjected to earthquake represent a difficult challenge to structural engineering, especially taking into consideration the effect of soil-structure interaction (SSI). L-shape in plan HRBs suffer from big straining actions when are subjected to an earthquake (in x- or y-direction, or both x- and y- directions). Additionally, the disastrous effect of seismic pounding may appear between two adjacent unsymmetrical HRBs. For two unsymmetrical L-shape in plan HRBs subjected to earthquake in three different direction cases (x, y, or both), including the SSI effect, different methods are investigated to mitigate the seismic pounding and thus protect these types of structures under the earthquake effect. The most effective technique to mitigate the seismic pounding and help in seismically protecting these adjacent HRBs is found herein to be the use of a combination of pounding tuned mass dampers (PTMDs) all over the height (at the connection points) together with tuned mass dampers (TMDs) on the top of both buildings.

Structural performance evaluation of a steel-plate girder bridge using ambient acceleration measurements

  • Yi, Jin-Hak;Cho, Soojin;Koo, Ki-Young;Yun, Chung-Bang;Kim, Jeong-Tae;Lee, Chang-Geun;Lee, Won-Tae
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.281-298
    • /
    • 2007
  • The load carrying capacity of a bridge needs to be properly assessed to operate the bridge safely and maintain it efficiently. For the evaluation of load carrying capacity considering the current state of a bridge, static and quasi-static loading tests with weight-controlled heavy trucks have been conventionally utilized. In these tests, the deflection (or strain) of the structural members loaded by the controlled vehicles are measured and analyzed. Using the measured data, deflection (or strain) correction factor and impact correction factor are calculated. These correction factors are used in the enhancement of the load carrying capacity of a bridge, reflecting the real state of a bridge. However, full or partial control of the traffic during the tests and difficulties during the installment of displacement transducers or strain gauges may cause not only inconvenience to the traffic but also the increase of the logistics cost and time. To overcome these difficulties, an alternative method is proposed using an excited response part of full measured ambient acceleration data by ordinary traffic on a bridge without traffic control. Based on the modal properties extracted from the ambient vibration data, the initial finite element (FE) model of a bridge can be updated to represent the current real state of a bridge. Using the updated FE model, the deflection of a bridge akin to the real value can be easily obtained without measuring the real deflection. Impact factors are obtained from pseudo-deflection, which is obtained by double-integration of the acceleration data with removal of the linear components on the acceleration data. For validation, a series of tests were carried out on a steel plategirder bridge of an expressway in Korea in four different seasons, and the evaluated load carrying capacities of the bridge by the proposed method are compared with the result obtained by the conventional load test method.

금전장관 수복물을 통한 치수강 개방이 금전장관 수복물의 미세변연누출에 미치는 영향 (THE EFFECT OF THE ENDODONTIC ACCESS CAVITY ON THE MARGINAL LEAKAGE OF CROWNS)

  • 김의성;정진호;김용근
    • Restorative Dentistry and Endodontics
    • /
    • 제27권4호
    • /
    • pp.389-393
    • /
    • 2002
  • The marginal integrity of the crown can be broken during endodontic access cavity preparation due to the vibration of burs. Therefore, the purpose of this study was to evaluate the effect of endodontic access cavity preparation on the marginal leakage of full veneer gold crowns. 24 intact molars were mounted in acrylic resin blocks and prepared for crowns by a restorative dentist and crowns were cast with gold alloy. 20 Crowns were cemented with glass ionomer cement and 2 crowns were not cemented for positive control. 200 thermo-cycles from 5$^{\circ}C$ to 5$0^{\circ}C$ with a travel time of 20s were completed. Then samples were randomly divided into 2 experimental groups of 9 each. Endodontic access preparation and zinc-oxide eugenol temporary fillings were done in Group 1. Teeth in Group 2 were not treated. Samples were coated with 2 layers of nail varnish and were immersed in 1% methylene blue dye for 20 hrs. Endodontic access was prepared in 2 samples, which were coated with nail varnish on all surfaces for negative control. After washing in running water gold crowns were cut with a #330 bur. Four buccolingual sections, 2 mm apart, were cut from the central section of each tooth and were examined and scored under the microscope for dye leakage. Score 1: leakage to the cervical 1/3 of the axial wall, Score 2: leakage to the middle 1/3 of the axial wall, Score 3: leakage to the coronal 1/3 of the axial wall, Score 4: leakage to the occlusal surface. The median value for Group 1 is 4 and for Group 2 is 2. The result of this study showed that samples in Group 1 leaked more than those in Group 2. This finding was significant(P<0.001).

산후마사지프로그램이 제왕절개술 산모의 스트레스 반응에 미치는 효과 (Effects of Postpartum Massage Program on Stress response in the Cesarean section Mothers)

  • 이성희
    • 대한간호학회지
    • /
    • 제30권2호
    • /
    • pp.488-497
    • /
    • 2000
  • The purpose of this study was to explore the effect of a postpartum massage program on stress response in the Cesarean section mothers. The study focused on evaluating the effect of postpartum massage program on mood, anxiety, skin temperature and concentration of saliva and breast milk immunoglobulin A in the Cesarean section mothers. This study was designed as a nonequivalent control group pretest-posttest quasi-experimental study. Twenty-eight Cesarean section mothers were selected as experimental group, whereas twenty- seven were control group. The postpartum massage program consisted of 20 minutes of warm-up, massage and ending phases and used once a day. During each program, there were 4 minutes of warm-up, 14 minutes of massage on back, axillary and breasts, and 2 minutes of ending. Massage were used for the experimental group by the same investigator 20 times per minute. The massage technique used were efflurage, petrissage, accupressure, kneading and vibration. Skin temperature was monitored with YSI Tele-thermometer(Simpson electric Co., USA) before and after massage program. The concentration of immunoglobulin A in saliva and breast milk was analyzed by immunoturbididimeter assay(Cobas INTEGRA, Swiss) before and after massage program. Also at this time mood and anxiety were measured by self-report. The data were analyzed using SPSS version 7.5 and hypothesis was tested with ANCOVA analysis and Pearson coefficient correlation. The results were as follows : 1) Score of mood increased significantly after use of postpartum massage program. 2) Level of anxiety decreased significantly after use of postpartum massage program. 3) Skin temperature increased significantly after use of postpartum massage program. 4) Concentration of saliva immunoglobulin A increased significantly after use of postpartum massage program. 5) Concentration of breast milk immunoglobulin A did not change significantly after use of postpartum massage program. 6) After use of postpartum massage program, there was significant correlation between psychological stress response and physiological stress response.The results suggest that postpartum massage program can be effective nursing intervention to reduce stress response in the postpartum mothers under stress.

  • PDF