• 제목/요약/키워드: vibration test plate-girder

검색결과 12건 처리시간 0.025초

주행조건에 따른 판형교 지점부 거동 측정 분석 (Measurement and Analysis about Behavior of Steel Plate Girder in Vicinity of Support, According to Driving Condition)

  • 이승열;김남홍;우병구;나강운
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.690-696
    • /
    • 2011
  • A number of conventional railway bridge is more than 2600. Non-ballast plate girder bridge is about 700 and this is 27% of all bridge numbers. Non-ballast plate girder has advantages that self load is more lighter than moving load and construction cost is more inexpensive than concrete bridge. But non-ballast plate girder has disadvantages that vibration and noise is bigger than concrete bridge. This study had analyzed behavior of non-ballast plate girder according to the arrangement of supports and driving conditions to review the proper arrangement of support. Measurements were performed in single line and disel locomotive of 7400type were used as test vehicle. The vehicle's driving conditions are as follows; Change of driving direction, Constant speed driving, Deceleration driving, Acceleration driving. Main measurement contents were horizontal displacement and vertical vibration acceleration in girder of vicinity support. Results of measurement are as follows; In case that a vehicle drives from fixed support to movable support, vertical vibration acceleration of the girder was smaller than opposition case.

  • PDF

진동신호기반 손상검색기법과 온도변화의 영향 (Temperature Effects on Vibration-Based Damage Detection Method)

  • 김정태;류연선;조현만;윤정방;이진학
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.608-613
    • /
    • 2003
  • In this paper, the variability of modal properties caused by temperature effects is assessed to adjust modal data used for frequency-based damage detection in plate-girder bridges. First, experiments on model plate-girder bridges are described. Next, the relationship between temperature and natural frequencies is assessed and a set of empirical frequency-correction formula are analyzed for the test structure. Finally, a frequency-eased method is used to locate and estimate severity of damage in the test structure using experimental modal data which are adjusted by the frequency-correction formula. Here, local damage in beam-type structures is detected by using measured frequencies and analytical mode shapes.

  • PDF

철도 판형교의 동적응답 주파수 특성에 대한 분석 (Analysis of the Characteristics of Dynamic Frequency Responses in Railway Plate Girder Bridges)

  • 오지택;최진유;김현민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.1035-1040
    • /
    • 2002
  • Railway plate girder bridges have characteristics that are not show dominant frequency in dynamic response frequencies like obtained vertical acceleration on the bridge during the train passing because the train loading relatively bigger than the bridge self-weight. This paper experimentally confirmed in FFT result has various frequencies due to inherent characteristic of railway train loading. To establish classification of dynamic frequency range in railway bridge acceleration during the train passing, vibration frequencies result from experimental test are analyzed concerning actuation vibration factors. Factors are train velocity, train type, mass ratio of vehicle/bridge, stiffness of bridge, bridge/track and vehicle/track. From the result, it is proposed that the frequencty classfication table with corresponding factors. Using the proposed table to develop rehabilitation technique of the plate girder bridge, to expect vibration reduction and comfort enhancement of the railway plate girder bridge.

  • PDF

Combining different forms of statistical energy analysis to predict vibrations in a steel box girder comprising periodic stiffening ribs

  • Luo, Hao;Cao, Zhiyang;Zhang, Xun;Li, Cong;Kong, Derui
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.119-131
    • /
    • 2022
  • Due to the complexity of the structure and the limits of classical SEA, a combined SEA approach is employed, with angle-dependent SEA in the low- and mid-frequency ranges and advanced SEA (ASEA) considering indirect coupling in the high-frequency range. As an important component of the steel box girder, the dynamic response of an L-junction periodic ribbed plate is calculated first by the combined SEA and validated by the impact hammer test and finite element method (FEM). Results show that the indirect coupling due to the periodicity of stiffened plate is significant at high frequencies and may cause the error to reach 38.4 dB. Hence, the incident bending wave angle cannot be ignored in comparison to classical SEA. The combined SEA is then extended to investigate the vibration properties of the steel box girder. The bending wave transmission study is likewise carried out to gain further physical insight into indirect coupling. By comparison with FEM and classical SEA, this approach yields good accuracy for calculating the dynamic responses of the steel box girder made of periodic ribbed plates in a wide frequency range. Furthermore, the influences of some important parameters are discussed, and suggestions for vibration and noise control are provided.

불확실한 온도 조건하의 모형 강 판형교의 진동기반 손상 모니터링 (Vibration-Based Damage Monitoring in Model Plate-Girder Bridges under Uncertain Temperature Conditions)

  • 박재형;홍동수;조현만;김정태
    • 한국해양공학회지
    • /
    • 제22권1호
    • /
    • pp.75-82
    • /
    • 2008
  • A vibration-based damage-monitoring scheme is proposed that would generate an alarm showing the occurrence and location of damage under temperature-induced uncertainty conditions. Experiments on a model plate-girder bridge are described, for which a set of modal parameters was measured under uncertain temperature conditions. A damage-alarming model is formulated to statistically identify the occurrence of damage by recognizing the patterns of damage-driven changes in the natural frequencies of the test structure and by distinguishing temperature-induced off-limits. A damage index method based on the concept of modal strain energy is implemented in the test structure to predict the location of damage. In order to adjust for the temperature-induced changes in the natural frequencies that are used for damage detection, a set of empirical frequency correction formulas is analyzed from the relationship between the temperature and frequency ratio.

철도 무도상판형교의 고유진동특성에 대한 연구 (A Study on the Characteristic of Natural Frequencies of Railway Open Deck Plate Girder Bridges)

  • 오지택;최진유;김현민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.1041-1046
    • /
    • 2002
  • A railway open deck plate girder bridge without ballast should support relatively heavier vehicle loads compared with its self-weight. For such a reason, actual dynamic response of the bridge is considerably differing with normal prediction because additional masses added from vehicle to a bridge have an effect on the dynamic characteristics of the bridge. These differences affect to the estimation of a natural frequency change that adopted for one of the evaluation technique of strength decrease, and these make trouble to the analysis of a natural frequency from the field test data that measured at the bridge subjected to a running vehicle. In this study, classification of mass participation ratio for each component of open deck plate girder bridge without ballast and the comparison according to the change of vibration characteristics for the case of subjected to a running vehicle were accomplished.

  • PDF

Dynamic Behaviors of Skewed Bridge with PSC Girders Wrapped by Steel Plate

  • Rhee, In-Kyu;Kim, Lee-Hyeon;Kim, Hyun-Min;Lee, Joo-Beom
    • International Journal of Railway
    • /
    • 제3권3호
    • /
    • pp.83-89
    • /
    • 2010
  • This paper attempts to extract the fundamental dynamic properties, i.e. natural frequencies, damping ratios of the 48 m-long, $20^{\circ}$ skewed real bridge with PSC girders wrapped by a steel plate. The forced vibration test is achieved by mounting 12 Hz-capacity of artificial oscillator on the top of bridge deck. The acceleration histories at the 9 different locations of deck surface are recorded using accelerometors. From this full-scaled vibration test, the two possible resonance frequencies are detected at 2.38 Hz and 9.86 Hz of the skewed bridge deck by sweeping a beating frequency up to 12 Hz. The absolute acceleration/energy exhibits much higher in case of higher-order twist mode, 9.86 Hz due to the skewness of bridge deck which leads asymmetric situation of vibration. This implies the test bridge is under swinging vertically in fundamental flexure mode while the bridge is also flickered up and down laterally at 9.86 Hz. This is probably by asymmetric geometry of skewed deck. A detailed 3D beam-shell bridge models using finite elements are performed under a series of train loads for modal dynamic analyses. Thereby, the effect of skewness is examined to clarify the lateral flickering caused by asymmetrical geometry of bridge deck.

  • PDF

Bayesian model update for damage detection of a steel plate girder bridge

  • Xin Zhou;Feng-Liang Zhang;Yoshinao Goi;Chul-Woo Kim
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.29-43
    • /
    • 2023
  • This study investigates the possibility of damage detection of a real bridge by means of a modal parameter-based finite element (FE) model update. Field moving vehicle experiments were conducted on an actual steel plate girder bridge. In the damage experiment, cracks were applied to the bridge to simulate damage states. A fast Bayesian FFT method was employed to identify and quantify uncertainties of the modal parameters then these modal parameters were used in the Bayesian model update. Material properties and boundary conditions are taken as uncertainties and updated in the model update process. Observations showed that although some differences existed in the results obtained from different model classes, the discrepancy between modal parameters of the FE model and those experimentally obtained was reduced after the model update process, and the updated parameters in the numerical model were indeed affected by the damage. The importance of boundary conditions in the model updating process is also observed. The capability of the MCMC model update method for application to the actual bridge structure is assessed, and the limitation of FE model update in damage detection of bridges using only modal parameters is observed.

Integrated Damage Identification System for large Structures via Vibration Measurement

  • JEONG-TAE KIM;SOO-YONG PARK;JAE-WOONG YUN;JONG-HOON BAEK
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제4권1호
    • /
    • pp.31-37
    • /
    • 2001
  • In this paper, an integrated damage identification system (IDIS) is proposed to locate and size damage in real structures. The application of the IDIS to real structures includes the measurement of modal responses, the construction of damage-detection models, and the implementation of measurements and models into the damage-detection process. Firstly, the theory of the damage identification method is outlined. Secondly, the schematic and each component of the IDIS are described. Finally, the practicality of the IDIS is verified from experiments on two different bridge-models, a model plate-grider and a model truss.

  • PDF

철도차량의 동적거동에 대한 레일이음매의 영향 (Field Test: Effects of a Rail Joint on the Dynamic Behavior of Railway Bridge)

  • 김현민;오지택;황원섭;조은상
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1174-1179
    • /
    • 2004
  • Field tests were conducted to investigate effects of a rail joint on the dynamic behavior of railway bridge. A four-span simpled supported plate girder bridge which has a rail joint on the third span was selected for tests. At the operating train loading, the induced vibration of the first and third span has been examined. The dynamic magnification ratio was used for quantitative analysis of impact effects caused by rail joint. The result of tests show that dynamic behavior of railway bridge picked up considerably due to a rail joint.

  • PDF