• Title/Summary/Keyword: vibration signatures

Search Result 26, Processing Time 0.023 seconds

Structural Health Monitoring of Full-Scale Concrete Girder Bridge Using Acceleration Response (가속도 응답을 이용한 실물 콘크리트 거더 교량의 구조건전성 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2010
  • In this paper, a two-phase structural health monitoring system using acceleration response signatures are presented to firstly alarm the change in structural condition and to secondly detect the changed location for full-scale concrete girder bridges. Firstly, Mihocheon Bridge which is a two-span continuous concrete girder bridge is selected as the target structure. The dynamic response features of Mihocheon Bridge are extracted by forced vibration test using bowling ball. Secondly, the damage alarming occurrence and the damage localization techniques are selected to design two-phase structural health monitoring system for Mihocheon Bridge. As the damage alarming techniques, auto-regressive model using time-domain signatures, correlation coefficient of frequency response function and frequency response ratio assurance criterion are selected. As the damage localization technique, modal strain energy-based damage index method is selected. Finally, the feasibility of two-phase structural health monitoring systems is evaluated from static loading tests using a dump truck.

Review on Human Comfort Criteria in Tall Buildings (초고층건축물의 수평진동사용성 평가 기준의 재고)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Cho, Gi-Sung;Km, Mu-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.410-415
    • /
    • 2008
  • This paper presents review on human comfort criteria in major codes and standards for tall buildings. In general, human comfort criteria of tall buildings have been used by magnitude of wind-induced acceleration response. Two different indexes in determination of the magnitude have been used: the peak value which occurs during a period of time and the rms value averaged over this same period. These distinctive acceleration indexes are discussed in detail and each criterion is reviewed and compared. The distinctions arisen because of the different wave forms, or acceleration signatures are addressed. It is described that which index of acceleration should be adopted in establishment of Korean human comfort criteria. In addition, some arguments from a technical standpoint that favor the use of each index are presented.

  • PDF

Hybrid Monitoring for Damage Detection in Structural Joints (구조 접합부의 손상검색을 위한 하이브리드 모니터링)

  • Kim Jeong-Tae;Na Won-Bae;Lee Byung-Jun;Hong Dong-Soo;Do Han-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.225-231
    • /
    • 2006
  • The purpose of this study is to develop a promising hybrid structural health monitoring system for structural joints. For this propose, the combined use of vibration-based techniques and electro-mechanical impedance technique is employed. For the verification of the proposed health monitoring scheme, a series of damage scenarios are designed to simulate various situations at which the connection joints can experience during their service life. The obtained experimental results, modal parameters and electro-magnetic impedance signatures, are carefully analyzed to recognize the connecting states and the target damage locations. From the analysis. it is shown that the proposed hybrid health monitoring system is successful for acquiring global and local damage information on the structural joints.

  • PDF

Hybrid Damage Monitoring Technique for Bridge Connection Via Pattern-Recognition of Acceleration and Impedance Signals (가속도 및 임피던스 신호의 특징분류를 통한 교량 연결부의 하이브리드 손상 모니터링 기법)

  • Kim, Jeong-Tae;Na, Won-Bae;Hong, Dong-Soo;Lee, Byung-Jun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.57-65
    • /
    • 2006
  • This paper presents hybrid structural damage monitoring system which performs both global damage assessment of structure and damage detection of local structural joints. Hybrid damage monitoring system is composed of vibration-based technique and electro/mechanic impedance technique. Vibration-based technique detects global characteristic change ot structure using modal characteristic change of structure, and electro/mechanical impedance technique detects damage existence of local structural joints using impedance change of PZT sensor. For the verification of the proposed hybrid monitoring system, a series of damage scenarios are designed to loosened bolts situations of the structural joints, and acceleration response and impedance response signatures are measured. The proposed hybrid monitoring system is implemented to monitor global damage-state and local damages in structural joints.

Quantitative Assessment of the Fastening Condition and the Crack Size with Using Piezoceramic(PZT) Sensors (압전소자를 이용한 볼트토크 및 크랙의 정량적평가에 관한 연구)

  • Hong, Dong-Pyo;Hong, Yong;Wang, Gao-Ping;Han, Byeong-Hee;Kim, Young-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.603-606
    • /
    • 2006
  • We present a study on the development of a practical and quantitative technique for the assessment of the structural health condition with using piezoceramic(PZT) sensors. The electro-impedance-based technique with the PZT patches is very sensitive for evaluation of the incipient and small damage in a high frequency range, and however the commonly traditional modal analysis method is effective only for considerably larger damages in low frequency range. The paper presents the technique in detecting and characterizing real-time damage on the specimen that is an aluminum plate fastened with bolts and nuts by different torques and as well a plate with a crack. By using the special arrangement of the PZT sensors, the required longitudinal wave is generated through the specimen. A large number of experiments are conducted and the different conditions of the specimens, i.e. the location and extent of loosening bolts, and the plate with a crack are simulated. respectively. Since fixing and loosening the loosened bolt is controlled by a torque wrench, we can control exactly the experiment of the different torques. Compared with the simulated healthy condition, we can find whether or not there is a damage in the specimen with using an impedance analyzer with the PZT sensors. Several indices are discussed and used for assessing the different simulated damages. As for the location of bolt loosening, the RMSD is found to be the most appropriate index for numerical assessment and as well the RMSD shows strongly linear relationship for assessing the extent of the bolt loosening, and the frequency peak shift ${\Delta}F$ is used to assess the cracked plate. The possibility of repeatability of the pristine condition signatures is also presented and the appropriate frequency range and interval are uniquely selected through large numbers of experiments.

  • PDF

High-Reliable Classification of Multiple Induction Motor Faults using Robust Vibration Signatures in Noisy Environments based on a LPC Analysis and an EM Algorithm (LPC 분석 기법 및 EM 알고리즘 기반 잡음 환경에 강인한 진동 특징을 이용한 고 신뢰성 유도 전동기 다중 결함 분류)

  • Kang, Myeongsu;Jang, Won-Chul;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.21-30
    • /
    • 2014
  • The use of induction motors has been recently increasing in a variety of industrial sites, and they play a significant role. This has motivated that many researchers have studied on developing fault detection and classification systems of induction motors in order to reduce economical damage caused by their faults. To early identify induction motor faults, this paper effectively estimates spectral envelopes of each induction motor fault by utilizing a linear prediction coding (LPC) analysis technique and an expectation maximization (EM) algorithm. Moreover, this paper classifies induction motor faults into their corresponding categories by calculating Mahalanobis distance using the estimated spectral envelopes and finding the minimum distance. Experimental results show that the proposed approach yields higher classification accuracies than the state-of-the-art conventional approach for both noiseless and noisy environments for identifying the induction motor faults.