• 제목/요약/키워드: vibration signatures

Search Result 26, Processing Time 0.022 seconds

Performance Evaluation of Multi-sensors Signals and Classifiers for Faults Diagnosis of Induction Motor

  • Niu, Gang;Son, Jong-Duk;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.411-416
    • /
    • 2006
  • Fault detection and diagnosis is the most important technology in condition-based maintenance(CBM) system that usually begins from collecting signatures of running machines using multiple sensors for subsequent accurate analysis. With the quick development in industry, there is an increasing requirement of selecting special sensors that are cheap, robust, and easy-installation. This paper experimentally investigated performances of four types of sensors used in induction motors faults diagnosis, which are vibration, current, voltage and flux. In addition, diagnostic effects of five popular classifiers also were evaluated. First, the raw signals from the four types of sensors are collected at the same time. Then the features are calculated from collected signals. Next, these features are classified through five classifiers using artificial intelligence techniques. Finally, conclusions are given based on the experiment results.

  • PDF

Development of EMD-based Fault Diagnosis System for Induction Motor (EMD 기반의 유도 전동기 고장 진단 시스템 개발)

  • Kang, Jungsun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.675-681
    • /
    • 2014
  • This paper proposes a fault diagnosis system for an induction motor. This system uses empirical mode decomposition(EMD) to extract fault signatures and multi-layer perceptron(MLP) neural network to facilitate an accurate fault diagnosis. EMD can not only decompose a signal adaptively but also provide intrinsic mode functions(IMFs) containing natural oscillatory modes of the signal. However, every IMF does not represent fault signature, an IMF selection algorithm based on harmonics and their energy of each IMF is proposed. The selected IMFs are utilized for fault classification using MLP and this system shows approximately 98 % diagnosis accuracy for the fault vibration signal of the induction motor.

High-Reliable Classification of Multiple Induction Motor Faults Using Vibration Signatures based on an EM Algorithm (EM 알고리즘 기반 강인한 진동 특징을 이용한 고 신뢰성 유도 전동기 다중 결함 분류)

  • Jang, Won-Chul;Kang, Myeongsu;Choi, Byeong-Keun;Kim, Jong-Myon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.346-353
    • /
    • 2013
  • Industrial processes need to be monitored in real-time based on the input-output data observed during their operation. Abnormalities in an induction motor should be detected early in order to avoid costly breakdowns. To early identify induction motor faults, this paper effectively estimates spectral envelopes of each induction motor fault by utilizing a linear prediction coding (LPC) analysis technique and an expectation maximization (EM) algorithm. Moreover, this paper classifies induction motor faults into their corresponding categories by calculating Mahalanobis distance using the estimated spectral envelopes and finding the minimum distance. Experimental results shows that the proposed approach yields higher classification accuracies than the state-of-the-art approach for both noiseless and noisy environments for identifying the induction motor faults.

  • PDF

Diagnostics and Prognostics Based on Adaptive Time-Frequency Feature Discrimination

  • Oh, Jae-Hyuk;Kim, Chang-Gu;Cho, Young-Man
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1537-1548
    • /
    • 2004
  • This paper presents a novel diagnostic technique for monitoring the system conditions and detecting failure modes and precursors based on wavelet-packet analysis of external noise/vibration measurements. The capability is based on extracting relevant features of noise/vibration data that best discriminate systems with different noise/vibration signatures by analyzing external measurements of noise/vibration in the time-frequency domain. By virtue of their localized nature both in time and frequency, the identified features help to reveal faults at the level of components in a mechanical system in addition to the existence of certain faults. A prima-facie case is made via application of the proposed approach to fault detection in scroll and rotary compressors, although the methods and algorithms are very general in nature. The proposed technique has successfully identified the existence of specific faults in the scroll and rotary compressors. In addition, its capability of tracking the severity of specific faults in the rotary compressors indicates that the technique has a potential to be used as a prognostic tool.

Electro Mechanical Impedance Based Damage Detection in Beams with Temperature Effect (온도 영향을 받는 보 구조물의 EMI 기반 손상 검색)

  • Lee, Byung-Jun;Kim, Jeong-Tae;Ryu, Yeon-Sun;Na, Won-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.184-187
    • /
    • 2005
  • Physical changes in a structural system may cause changes in mechanical impedance of the system. Due to the electro-mechanical coupling effect in piezoelectric materials, this change can be monitoring by the electrical impedance of the piezoelectric sensor. In this paper, the variability of electro-mechanical impedance caused by temperature effect is assessed to adjust impedance data used for EMI based damage detection in beams. First experiments on beams are described. Next, experiments were performed under the temperature varying condition, in the range of $3^{\circ}C\;to\;23^{\circ}C$. Finally, the relationship between temperatures and impedance signatures is analyzed empirically temperature-frequency patten for the test structure.

  • PDF

Human Comfort Criterium for Horizontal Vibration of High-Rise Buildings (초고층 건축물의 수평진동 사용성 평가기준)

  • Cho, Kang-Pyo;Hong, Sung-Il;Jeong, Seung-Hwan;Jo, Su-Yeon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.105-108
    • /
    • 2006
  • should be in This paper presents review on human comfort criteria in major codes and standards for tall buildings. In general, human comfort criteria of tall buildings have been used by magnitude of wind-induced acceleration response. Two different indexes in determination of the magnitude have been used: the peak value which occurs during a period of time and the rms value averaged over this same period. These distinctive acceleration indexes are discussed in detail and each criterium was reviewed and compared. The distinctions arisen because of the different wave forms, or acceleration signatures were addressed. It is described that which index of acceleration should be adopted in establishment of Korean human comfort criteria. In addition, some arguments from a technical standpoint that favor the use of each index are presented.

  • PDF

Proposition and Application of Novel DWT Mother Function for AE signature (AE 신호를 위한 새로운 DWT 기저함수 제안 및 적용)

  • Gu, Dong-Sik;Kim, Jae-Gu;Choi, Byeong-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.582-587
    • /
    • 2011
  • Acoustic Emission(AE) is widely used for early detection of faults for rotating machinery in these days because of its high sensitivity. AE signal has to need for transferring to low frequency range for the spectrum analysis included the fault mechanism. In transferring process, we lose a lot of fault information caused by unusable signal processing method. Discrete Wavelet Transform(DWT) is a method of signal processing for AE signatures, but the pattern of its mother function is not optimized with AE signals. So, we can lose the fault information when we want to use the DWT for AE signal. Therefore, in this paper, we will propose a novel pattern for DWT mother function, which is optimized with AE signals. And it will be applied to compare the results of DWT by daubechie and novel pattern.

  • PDF

Hybrid Damage Detection in Prestressed Concrete Girder Bridges (프리스트레스트 콘크리트 거더교의 하이브리드 손상 검색)

  • Hong, Dong-Soo;Lee, Jung-Mi;Na, Won-Bae;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.669-674
    • /
    • 2007
  • To develop a promising hybrid structural health monitoring (SHM) system, a combined use of structural vibration and electro-mechanical (EM) impedance is proposed. The hybrid SHM system is designed to use vibration characteristics as global index and EM impedance as local index. The proposed health monitoring scheme is implemented into prestressed concrete (PSC) girder bridges for which a series of damage scenarios are designed to simulate various prestress-loss situations at which the target bridges car experience during their service life. The measured experimental results, modal parameters and electro-magnetic impedance signatures, are carefully analyzed to recognize the occurrence of damage and furthermore to indicate its location.

  • PDF

Experimental Verification of Spectral Element Analysis for the High-frequency Dynamic Responses of a Beam with a Surface Bonded Piezoelectric Transducer (압전소자가 부착된 보의 고주파수 동적응답에 대한 스펙트럼 요소 해석의 실험적 검증)

  • Kim, Eun-Jin;Sohn, Hoon;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1347-1355
    • /
    • 2009
  • This paper demonstrates the validity of spectral element analysis for modeling the high-frequency dynamic behaviors of a beam with a surface-bonded piezoelectric wafer through a laboratory test. In the spectral element analysis, the high-frequency electro-mechanical interaction can be considered properly with relatively low computational cost compared to the finite element analysis. In the verification test, a cantilever beam with a surface-bonded piezoelectric wafer is forced to be in steady-state motion by exerting the harmonic driving voltage signal on the piezoelectric wafer. A laser scanning vibrometer is used to obtain the overall dynamic responses of the structure such as resonance frequencies, the associated mode shapes, and frequency response functions up to 20 kHz. Then, these dynamic responses from the test are compared to those computed by the spectral element analysis. A two-dimensional finite analysis is conducted to obtain the asymptotic solutions for the comparison purpose as well.

Hybrid damage monitoring of steel plate-girder bridge under train-induced excitation by parallel acceleration-impedance approach

  • Hong, D.S.;Jung, H.J.;Kim, J.T.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.719-743
    • /
    • 2011
  • A hybrid damage monitoring scheme using parallel acceleration-impedance approaches is proposed to detect girder damage and support damage in steel plate-girder bridges which are under ambient train-induced excitations. The hybrid scheme consists of three phases: global and local damage monitoring in parallel manner, damage occurrence alarming and local damage identification, and detailed damage estimation. In the first phase, damage occurrence in a structure is globally monitored by changes in vibration features and, at the same moment, damage occurrence in local critical members is monitored by changes in impedance features. In the second phase, the occurrence of damage is alarmed and the type of damage is locally identified by recognizing patterns of vibration and impedance features. In the final phase, the location and severity of the locally identified damage are estimated by using modal strain energy-based damage index methods. The feasibility of the proposed scheme is evaluated on a steel plate-girder bridge model which was experimentally tested under model train-induced excitations. Acceleration responses and electro-mechanical impedance signatures were measured for several damage scenarios of girder damage and support damage.