• Title/Summary/Keyword: vibration signal

Search Result 1,284, Processing Time 0.03 seconds

Development of Coaxial Propeller Test Facility and Experimental Study on Hover Performance Characteristics for Drone (드론용 동축 프로펠러 시험장치 개발 및 제자리비행 성능특성에 대한 실험적 연구)

  • Song, Youn-Ha;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • In this paper, the test facility for coaxial propellers at low Reynolds developed and validated by measured data. The test equipment was designed to measure the hovering performance of propellers according to distances between the upper/lower propellers. Thrust, torque, rotational speed, vibration, and amperage of upper and lower propellers can be measured separately. The data acquisition system was built to collect signals of sensors, and LabVIEW software was used to control the motor and collect the signal. The hover performance tests of single propellers were preceded for the facility validation, and then the performance values of coaxial propellers were measured according to distances and diameter differences between the upper/lower propellers. The results showed that the high efficiency is achieved at 20%~30% distance between the upper propeller and lower one. The configuration that the upper propeller has shorter diameter than the lower one has the highest efficiency than other configuration.

Development of Sound Frequency Analyser using an Ultra-Low Power MCU (초저전력 Micro Controller Unit(MCU)를 활용한 소리 주파수 분석기 개발)

  • Choi, Jae-Hoon;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.4
    • /
    • pp.403-410
    • /
    • 2016
  • Materials made of metals have their own manifest resonant frequencies. Using this property, the quality test of products from the factory can be performed. An impact is applied to the product and the frequencies of the sound and/or vibration are measured using high-end equipments. They use a general purpose computer or a DSP(: Digital Signal Processor)-based stand-alone system which is usually too large in-size to carry and expensive to build. In this paper, we introduce a system that is developed based on a MSP430 MCU(:Micro-Controller Unit) from TI(: Texas Instruments). The ultra-low power MSP430 MCUs make it possible to make a frequency analyzer in a very small size without the need of using a large-size battery. The proposed system can be used in situations where the frequency analyzer should be carried easily with an investigator and should be built at low cost sacrificing some accuracy. We implemented the system using a launchpad supplied by TI and could confirm that the proposed system could identify with a high-accuracy the frequencies of various artificial and natural sounds.

System for Transmitting Army Hand Signals Using Motion Sensors (모션 센서를 이용한 군대 수신호 전송 시스템)

  • Shin, Geon;Jeon, Jaechol;Jeon, Minho;Choi, Sukwon;Kim, Iksu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.331-338
    • /
    • 2016
  • In this paper, we propose a system for transmitting army hand signals using motion sensors. The proposed system consists of a squad commander device, squad member devices, and a server. The squad command device and squad member device have been implemented using a micro arduino, an accelerometer sensor, and a gyroscope sensor, and the server has been implemented using a Rasberry Pi 3. Because the devices are made in the form of band, they are lightweight and portable. The proposed system can transmit the hand signals through vibration in conditions of poor visibility. We have designed and implemented the squad member device to be able to recognize four military hand signals. Through experiments, the proposed system have shown 88.82% of correct recognition. In conclusion, we expect to increase effectiveness of army operations and survival rate of soldiers.

Structural identification based on substructural technique and using generalized BPFs and GA

  • Ghaffarzadeh, Hosein;Yang, T.Y.;Ajorloo, Yaser Hosseini
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • In this paper, a method is presented to identify the physical and modal parameters of multistory shear building based on substructural technique using block pulse generalized operational matrix and genetic algorithm. The substructure approach divides a complete structure into several substructures in order to significantly reduce the number of unknown parameters for each substructure so that identification processes can be independently conducted on each substructure. Block pulse functions are set of orthogonal functions that have been used in recent years as useful tools in signal characterization. Assuming that the input-outputs data of the system are known, their original BP coefficients can be calculated using numerical method. By using generalized BP operational matrices, substructural dynamic vibration equations can be converted into algebraic equations and based on BP coefficient for each story can be estimated. A cost function can be defined for each story based on original and estimated BP coefficients and physical parameters such as mass, stiffness and damping can be obtained by minimizing cost functions with genetic algorithm. Then, the modal parameters can be computed based on physical parameters. This method does not require that all floors are equipped with sensor simultaneously. To prove the validity, numerical simulation of a shear building excited by two different normally distributed random signals is presented. To evaluate the noise effect, measurement random white noise is added to the noise-free structural responses. The results reveal the proposed method can be beneficial in structural identification with less computational expenses and high accuracy.

Coherent Analysis of vehicle HVAC Using the MDSA Method (다차원 해석법을 이용한 자동차 공조시스템의 기여도분석)

  • Oh Jae-Eung;Hwang DongKun;Abu Aminudin;Lee Jung-Youn;Kim SungSoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.143-150
    • /
    • 2005
  • To verify applicability of multi-dimensional spectral analysis (MDSA) fur noise source identification two different approaches which are frequency response and coherent function have been investigated. The coherence function approach appears able to separate the correlated system when the noise sources were coherent. In this study, we identify contribution of structure-borne-noise of vehicle HVAC system using MDSA method. Firstly, to identify the applicability of MDSA method, 4-inputs of vehicle HVAC system were the signals measured by accelerometers attached on the selected noise sources which were composed of blower, evaporator, heater and duct. While 1-output which was driver's position sound was the SPL signals measured by a remote microphone, when the blower motor was operating. We identify efficiency of systems modeled with four Inputs/single output through ordinary coherence function (OCF) and partial coherence function (PCF). As a result of experiment, the blower accounted for $62-88\%$ of the overall level of sound energy density. Also, according to the analysis of acoustic signal and vibration signals measurement, an investigation of the noise source identification in the vehicle HVAC is presented. With the sound intensity method, the major sources of the vehicle HVAC radiation are verified. Also the method of improving the noise reduction is proposed by attaching damping patch access to blower motor and noise reduction is verified.

A Study On Cause Analysis and Improvement About Malfunction of Proximity Sensor Exposed High Temperature (근접센서의 고온 고장발생에 관한 원인분석 및 개선 연구)

  • Park, Jin-Saeng
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Because internal space of combat vehicle reachs about $80^{\circ}C$ at high temperature period, Proximity Sensor exposed high temperature and humidity, which has function to sense the distance and transfer signal for control unit, have enlarged sensing distance and finally locked on. Malfunction of sensing itself occur frequently, therefore we carried out cause analysis and improvement. We accomplish improvement activity secondly. Through-out many trial and error, we find out that malfunction of sensor occur at high temperature circumstance. To improve, the another Emitter Coil is added to increase voltage difference and improve sensing accuracy about 5~10 times. And we accomplish design improvement to dull temperature and humity change after increasing molding surface to add vibration and shock resistance. We prove that the improved product do not fail after enduring 136hr at $85^{\circ}C$ temperature and 85% relative humidity circumstance chamber.

Electronic Stethoscope using PVDF Sensor for Wireless Transmission of Heart and Lung Sounds (PVDF를 이용한 청진 센서 및 심폐음 무선 전송이 가능한 전자 청진기)

  • Im, Jae Joong;Lim, Young Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.57-63
    • /
    • 2012
  • Effective use of stethoscope is very important for primary clinical diagnosis for the increasing cardiovascular and respiratory disease. This study developed the contact vibration sensor using piezopolymer film which minimizes the ambient noise, and signal processing algorithm was applied for providing better auscultation sounds compare to the existing electronic stethoscopes. Especially, low frequency heart sounds were acquired without distortion, and the quality of lung sounds were improved. Also, auscultating sounds could be transmitted using bluetooth, which made possible to be used for the u-healthcare environment. Results of this study, auscultation of heart and lung sounds, could be applied to the convergence industry of medical and information communication technology through remote diagnosis.

The Study on Intraoral Pressure, Closure Duration, and VOT During Phonation of Korean Bilabial Stop Consonants (한국어 양순 파열음 발음시 구강내압과 폐쇄기, VOT에 대한 연구)

  • Pyo Hwa Young;Choi Hong Shik
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.390-398
    • /
    • 1996
  • Acoustic analysis study was performed on 20 normal subjects by speaking nonsense syllables composed of Korean bilabial stops(/p, $p^{*}$/, ph/) and their Preceding and/or following vowel /a/(that is, [pa, $p^{*}a$, pha, apa, $ap^{*}a$, apha]) with an ultraminiature pressure sensor in their mouths. Speech materials were phonated twice, once with a moderate voice, another time with a loud voice. The acoustic signal and intraoral pressure were recorded simultaneously on computer. By these procedures, we were to measure the intraoral pressure, closure duration and VOT of Korean bilabial stops, and to compare the values one another according to the intensity of phonation and the position of the target consonants. Intraoral pressure was measured by the peak intraoral pressure value of its wave; closure duration by the time interval between the onset of intraoral pressure build-up and the burst meaning the release of closure; Voice onset time(VOT) by the time interval between the burst and the onset of glottal vibration. Heavily aspirated bilabial stop consonant /ph/ showed the highest intraoral pressure value, unaspirated /p$^{*}$/, the second, slightly aspirated /p/, the lowest. The syllable initial bilabial stops showed higher intraoral pressure than word initial stops, and the value of loudly phonated consonants were higher than moderate consonants. The longest closure duration period was that of /$p^{*}$/ and the shortest, /p/, and the duration was longer in word initial position and in the moderate voice. In VOT, the order of the longest to shortest was /ph/, /p/, /$p^{*}$/, and the value was shorter when the consonant was in intervocalic position and when it was phonated with a loud voice.

  • PDF

Measurements of Vibration and Pressure of an Oxidizer Pump for a 7-tonf Turbopump with a Modified Rear Floating Ring Seal (수정된 후방 플로팅 링 실을 적용한 7톤급 터보펌프 산화제 펌프의 진동 및 압력 측정)

  • Bae, JoonHwan;Kwak, Hyun-Duck;Choi, ChangHo;Choi, JongSoo
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.253-261
    • /
    • 2020
  • In this paper, we present an experimental investigation of the frequency characteristics and a visual inspection of an oxidizer pump with a modified rear-floating ring seal for a 7-tonf turbopump. An oxidizer pump typically operates at high rotational speeds and under cryogenic conditions. Despite its low hydraulic efficiency, the floating ring seal is frequently employed as a leakage control solution for turbomachinery because it effectively reduces abrasion by friction. When the oxidizer pump starts up, the floating ring moves excursively but locks up stably against the pump casing when the contact pressure increases. The compressive force on the floating ring depends on the hydrodynamic forces induced by the flow through the floating ring. This force is controlled by the nose position of the floating ring. Based on a validation test for a 7-tonf turbopump with two types of floating rings, we concluded that the floating ring with a small diameter nose can move easily with a low contact pressure in the cooling path. This leads to instability of the pressure fluctuation around the floating ring. In contrast, a floating ring with a large diameter nose has a high contact pressure and attaches strongly to the casing, which causes wear and frictional oxidation between the contact surfaces of the impeller and the floating ring.

The Study on Intraoral Pressure, Closure Duration and VOT During Phonation of Korean Bilabial Stop Consonants (한국어 양순 파열음 발음시 구강내압과 폐쇄기, VOT에 대한 연구)

  • 표화영;최홍식
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.7 no.1
    • /
    • pp.50-55
    • /
    • 1996
  • Acoustic analysis study was performed on 20 normal subjects by speaking nonsense syllables composed of Korean bilabial stops$(/P, P^{\star}, P^{h}/)$ and their preceding and/or following vowel /a/ (that is, $[pa, p^{\star}a, p^{h}a, apa, ap^{\star}a, ap^{h}a]$) with an ultraminiature pressure, sensor. in their mouths. Speech materials were phonated twice, once with a moderate voice, another time with a loud voice. The acoustic signal and intraoral pressure were recorded simultaneously on computer. By these procedures, we were to measure the intraoral pressure, closure duration and VOT of Korean bilabial stops, and to compare the values one another according to the intensity of phonation and the position of the target consonants. Intraoral pressure was measured by the peak intraoral pressure value of Its wave closure duration by the time interval between the onset of intraoral pressure build-up and the burst meaning the release of closure ; Voice onset time(VOT) on by the time interval between the burst and the onset or glottal vibration. Heavily aspirated bilabial stop consonant /$p^h$/ showed the highest intraoral pressure value, unaspirated /$p^{\star}$/, the second, slightly aspirated /P/, the lowest. The syllable initial bilabial stops showed higher intraoral pressure than word initial stops, and the value of loudly phonated consonants were higher than moderate consonants. The longest closure duration period was that of /$p^{\star}$/ and the shortest, /P/, and the duration was longer in word initial position and in the moderate voice. In VOT, the order of the longest to shortest was $/{p^h}/, /p/, /{p^\star}/$, and the value was shorer when the consonant was in intervocalic position and when it was phonated with a loud voice.

  • PDF