• 제목/요약/키워드: vibration sensor

Search Result 1,201, Processing Time 0.024 seconds

Nonlinear Vibration Analysis of Viscoelastic Belts (점탄성 벨트의 비선형 진동해석)

  • 우영주;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.836-841
    • /
    • 2002
  • The nonlinear vibration of moving viscoelastic belts excited by the eccentricity of pulleys is investigated through experimental and analytical methods. Laboratory measurements demonstrate the nonlinearities in the responses of the belt, particularly in the resonance region and with the variation of tension. The measurements of the belt motion were made using a noncontact laser sensor Jump and hysteresis phenomenon are observed experimentally and are studied with a model which considers the nonlinear relation of belt stretch. An ordinary differential equation is derived as a working form of the belt equation of motion. Numerical results show good agreements with the experimental observations, which demonstrates the nonlinearity of viscoelastic moving belts

  • PDF

Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads

  • Ahmadi, Habib;Foroutan, Kamran
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.643-655
    • /
    • 2020
  • Active control of nonlinear vibration of stiffened functionally graded (SFG) cylindrical shell is studied in this paper. The system is subjected to axial and transverse periodic loads in the presence of thermal uncertainty. The material composition is considered to be continuously graded in the thickness direction, also these properties depend on temperature. The relations of strain-displacement are derived based on the classical shell theory and the von Kármán equations. For modeling the stiffeners on the cylindrical shell surface, the smeared stiffener technique is used. The Galerkin method is used to discretize the partial differential equations of motion. Some comparisons are made to validate the SFG model. For suppression of the nonlinear vibration, the linear and nonlinear control strategies are applied. For control objectives, the piezoelectric actuator is attached to the external surface of the shell and the thin ring piezoelectric sensor is attached to the middle internal surface of shell. The effect of PID, feedback linearization and sliding mode control on the suppression of vibration for SFG cylindrical shell is presented.

Estimation of Vibration-damping Properties for Steel Beam (Steel beam의 진동감쇠 특성평가)

  • Shin, Su-Hyun;Nam, Hyo-Duk;Jung, Sung-Soo;Lee, Young-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.439-442
    • /
    • 2003
  • The test method of ASTM E 756 and JIS G 0602 to estimate vibration-damping properties is presented. Measurement method depending on specimen support, exciting method and calculation method for loss factor is used. Half-power bandwidth method and vibration decay method is used in the calculation method for loss factor, and Young's modulus is decided by geometric character and density for specimen and resonance frequency. Vibration measurement sensor is compared by using non-contact displacement detector, velocity detector and accelerometer. The cause of measurement error is also presented.

  • PDF

Development of Remote Vibration Measurement System Using the Internet (인터넷을 이용한 원격 계측 시스템 개발)

  • Kwak, Moon-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.322-326
    • /
    • 2000
  • This paper is concerned with the development of remote vibration measurement system using the internet. Recently, various techniques are developed based on the advance of the internet environment. In this study, we developed the remote vibration measurement system using the internet server programming technique, the client programming technique, the GPIB programming, and the A/D, D/A programming techniques. Hence, we can control the measurement devices remotely. The feasibility of the system is validated using the experimental setup. The output of the D/A is connected to the small exciter and the piezoceramic sensor is connected to the A/D port. By sending out the exciting signal to the structure, we can collect the response. The experiment shows that the proposed idea works well. Another experiment consists of the function generator and the low-pass filter circuit. The wave form, amplitude, and the frequency of the function generator is controlled by the GPIB program and the output of the circuit is collected by the A/D port. The output is then displayed in HTML format.

  • PDF

Active Vibration Control of UAV EO/IR Sensor Mount Using Piezoelectric Actuator (압전작동기를 이용한 무인항공기 EO/IR 센서 마운트의 능동 진동 제어)

  • Park, Dong-Hyun;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1278-1285
    • /
    • 2008
  • This paper presents an inertia type of piezostack based active mount fur unmanned aero vehicle (UAV) camera system. After identifying the stiffness and damping properties of the rubber element and piezostack a mechanical model of the active mount system is established. The governing equation of mount is then derived and expressed in a state space form. Subsequently, a sliding mode controller which is robust to uncertain parameters is designed in order to reduce the vibration imposed according to the military specification associated with UAV camera mount system operation. Control performances such as acceleration and transmitted force are evaluated through both computer simulation and experimental implementation.

Real-time Subtle Vibration Sensing of Optical Fiber Cable based on External-cavity Frequency-swept Laser (외부공진형 광주파수가변 레이저를 이용한 실시간 광섬유 케이블의 미세 진동 측정 연구)

  • Jang, Hansol;Kim, Chang-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.943-948
    • /
    • 2020
  • In this paper, we developed a fiber optic interferometer system based on frequency-swept laser. This frequency-swept laser with an external-cavity structure can generate a high coherent light with a linewidth of 132 kHz at 1552 nm. It also shows a superior swept linearity of R2 = 0.99995 under repetition rate of 200 kHz due to absence of mechanical moving parts in the laser cavity. By using a piezoelectric fiber optic stretcher, various vibration experiments were implemented, such as 0.5 to 2.0 kHz vibration signals with intervals of 0.5 kHz, with a sampling rate of 7 kHz. Real-time peak tracking can be successfully recovered according to the applied vibration frequency with high linearity of R2 = 0.99983.

Vibration-Based Monitoring of Stay-Cable Force Using Wireless Piezoelectric-Based Strain Sensor Nodes

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.669-677
    • /
    • 2012
  • This study presents a method to monitor cable force using wireless sensor nodes and piezoelectric sensors. The following approaches are carried out to achieve the objective. Firstly, the principle of piezoelectric materials (e.g., PZT) as strain sensors is reviewed. A cable force estimation method using dynamic features of cables measured by piezoelectric materials is presented. Secondly, the design of an automated cable force monitoring system using the data acquisition sensor-node Imote2/SHM-DAQ is described. The sensor node is originally developed by University of Illinois at Urbana-Champaign and is adopted in this study to monitor strain-induced voltage from PZT sensors. The advantages of the system are cheap, and eligible for wireless communication and automated operation. Finally, the feasibility of the proposed monitoring system is evaluated on a lab-scaled cable.

Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring (센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링)

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.

Wireless Sensor Network Monitoring System (무선 센서 네트워크 모니터링 시스템)

  • Jo, Hyoung-Kook;Jung, Kyung-Kwon;Kim, Joo-Woong;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.946-949
    • /
    • 2007
  • A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion at different locations. Environmental monitoring represent a class of sensor network applications with enormous potential benefits for scientific communities and society. In this paper we design and implement a novel platform for sensor networks to be used for monitoring of temperature, humidity, and light sensors.

  • PDF

Modal Strain Energy-based Damage Detection in Beam Structures using Three Different Sensor Types (보구조물의 모드변형에너지기반 손상 검색: 3가지 타입 센서의 비교)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.680-683
    • /
    • 2011
  • This study deals with damage detection in beam structure by using modal strain energy-based technique with three different sensor types: accelerometer, lead zirconate titanate (PZT) piezoelectric sensor and electrical strain gage. First, the use of direct piezoelectric effect of PZT sensor for dynamic strain response are presented. Next, a modal strain energy-based damage detection method is outlined. For validation, forced vibration tests are carried out on lab-scale aluminum cantilever beam. The dynamic responses are measured for several damage scenarios. Based on damage localization results, the performance of three different sensor types is evaluated.

  • PDF