• Title/Summary/Keyword: vibration power

Search Result 2,776, Processing Time 0.026 seconds

An Efficient Model to Calculate Axial Natural Vibration Frequency of Power Transformer Winding

  • Li, Kaiqi;Guo, Jian;Liu, Jun;Zhang, Anhong;Yu, Shaojia
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.431-436
    • /
    • 2016
  • In the design of transformer winding, natural vibration frequency is an important parameter. This paper presents a 2D model to calculate axial vibration natural frequency of power transformer winding based on the elastic dynamics theory, and according to the elastic support equivalent principle of radial pressboards. The 3D model to calculate natural vibration frequency can be simplified as a 2D one as the support of pressboards on the winding is same. It is verified that results of the 2D model are consistent with those of 3D one, but the former can achieve much higher calculation efficiency. It shows that increasing the width and number of pressboards can improve axial natural frequency through formula analysis and simulation, and also the relations between the changes of axial pre-compression and axial natural vibration frequency on the windings are investigated. Finally, the proposed 2D model's effectiveness is proved when compared with tested ones.

Vibration Analysis of Conical Shells with Annular Plates Using Transfer of Influence Coefficient (영향계수의 전달에 의한 환원판이 결합된 원추형 셸의 진동해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.52-59
    • /
    • 2015
  • This paper is presented for the free vibration of a conical shell with annular plates or circular plate using the transfer of influence coefficient. The governing equations of vibration of a conical shell, including annular plate, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-annular plates. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of finite element method, transfer matrix method and ANSYS. The conclusion show that the present method can accurately obtain natural vibration characteristics of the conical shell with annular or circle end plates.

Acoustic Investigation on BFP Piping System in a Power Plant (발전소 급수용 펌프 배관계의 음향학적 현상 고찰)

  • Yang, K.H.;Cho, C.H.;Bae, C.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1029-1035
    • /
    • 2011
  • Pressure pulsation of exciting sources that generally occurs on the piping system connected to the discharge of BFP(boiler feed water pump) in power plants causes wave reflection, wave interference, resonance, standing wave and so on. But if the operating speed of the pump is changed, the state of the noise and vibration can be done because characteristics of the exciting source are changed. This paper is to investigate the cause of the noise and vibration occurring on the piping system when the operating speed of BFP is down in accordance with lowering of the power generation. It is approached to two points of view ; Firstly, it is examined whether the pulsation source impacts on the shell mode vibration that vibrates radially across the cross-section of the pipe. But it doesn't affect the shell mode as much as the resonance occurs. Secondly, to find the relation between the pulsation source and the acoustic mode of the piping system, analysis for the piping system by indirect BEM(boundary element method) is carried out. Therefore it is investigated that the mechanism of the noise and vibration relates with acoustic mode of the piping system.

Seismic vibration control for bridges with high-piers in Sichuan-Tibet Railway

  • Chen, Zhaowei;Han, Zhaoling;Fang, Hui;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.749-759
    • /
    • 2018
  • Aiming at widely used high-pier bridges in Sichuan-Tibet Railway, this paper presents an investigation to design and evaluate the seismic vibration reduction effects of several measures, including viscous damper (VD), friction pendulum bearing (FPB), and tuned mass damper (TMD). Primarily, according to the detailed introduction of the concerned bridge structure, dynamic models of high-pier bridges with different seismic vibration reduction (SVR) measures are established. Further, the designs for these SVR measures are performed, and the optimal parameters of these measures are investigated. On this basis, the vibration reduction effects of these measures are analyzed and assessed subject to actual earthquake excitations in Wenchuan Earthquake (M=8.0), and the most appropriate SVR measure for high-pier bridges in Sichuan-Tibet Railway is determined at the end of the work. Results show that the height of pier does not obviously affect the performances of the concerned SVR measures. Comprehensively considering the vibration absorption performance, installation and maintenance of all the employed measures in this paper, TMD is the best one to absorb vibrations induced by earthquakes.

Bender-type Multilayer Piezoelectric Devices for Energy Harvesting (미소에너지 하베스팅용 적층 벤더 압전 소자 성능 연구)

  • Jeong, Soon-Jong;Kim, Min-Soo;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.193-193
    • /
    • 2008
  • Wearable and ubiquitous micro systems will be greatly growing and their related devices should be self-powered in order to avoid the replacement of finite power sources, for example, by scavenging energy from the environment. With ever reducing power requirements of both analog and digital circuits, power scavenging approaches are becoming increasingly realistic. One approach is to drive an electromechanical converter from ambient motion or vibration. Vibration-driven generators based on electromagnetic, electrostatic and piezoelectric technologies have been demonstrated. Among various generator types proposed so far, piezoelectric generator possesses considerable potential in micro system. To overcome low mechanical-to-electric energy conversion, the piezoelectric device should activate in resonance mode in response to external vibration. Normally, the external vibration excretes at low frequency ranging 0.1 to 200 Hz, whereas the resonant frequencies of the devices are fixed as constant. Therefore, keeping their resonant mode in varying external vibration can be one of important points in enhancing the conversion efficiency. We investigated the possibility of use of multi-bender type piezoelectric devices. To match the external vibration frequency with the device resonant frequency, the various devices with different resonant frequency were chosen.

  • PDF

Current and Vibration Characteristics Analysis of Induction Motors for Vertical Pumps in Power Plant (발전소 대형 입형펌프 전동기의 전류/진동신호 특성 분석)

  • Bae, Yong-Chae;Lee, Hyun;Kim, Yeon-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.404-413
    • /
    • 2006
  • Induction motors are the workhorse of our industry because of their versatility and robustness. The diagnosis of mechanical load and power transmission system failures is usually carried out through mechanical signals such as vibration signatures, acoustic emissions, motor speed envelope. The motor faults including mechanical rotor imbalances, broken rotor bar, bearing failure and eccentricities problems are reflected in electric, electromagnetic and mechanical quantities. The recent research has been directed toward electrical monitoring of the motor with emphasis on inspecting the stator current of the motor, The stator current spectrum has been widely used for fault detection in induction motor systems. The motor current signature analysis is the useful technique to assess machine electrical condition. This paper describes the motor condition detected by the current signatures Paralleled with vibration signatures analysis of induction motors with the roller bearing and the journal bearing type for large vertical pumps in power plant as examples to discuss for motor fault detection and diagnosis.

Vibration and Noise Analysis for Rotary Compressor in Medium-to-high Frequency Ranges (중고주파수 대역의 회전형 압축기 진동소음 해석)

  • Kwon, Hyun-Wung;Song, Jee-Hun;Hong, Suk-Yoon;Hwa, Jong-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1033-1041
    • /
    • 2012
  • Power flow analysis(PFA) is introduced for solving the noise and vibration analysis of system structures in medium-to-high frequency ranges. The vibration analysis software, $PFADS_{C++}$ R4 based on power flow finite element method(PFFEM) and the noise prediction software, $NASPFA_{C++}$ R1 based on power flow boundary element method(PFBEM) are developed. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the rotary compressor. PFFEM is employed to analyze the vibrational responses of the rotary compressor, and PFBEM is applied to analyze the radiation noise around rotary compressor. The vibrational energy of the structure is used as an acoustic intensity boundary condition of PFBEM. Numerical simulations are presented for the rotary compressor, and reliable results have been obtained.

A Numerical Analysis Study on the Estimation of the 3D Underwater Radiated Noise Pattern using the Hull Vibration Signals (선체진동신호를 이용한 3차원 수중방사소음 패턴 산출에 대한 수치해석 연구)

  • Yi, Jong-Ju;Kang, Myung-Hwan;Han, Seung-Jin;Bae, Soo-Ryong;Kim, Jae-Ho;Jung, Woo-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.770-779
    • /
    • 2014
  • In this study, a numerical estimation method for 3D underwater radiated noise pattern using hull vibration and total acoustic power of the vibrating structure in the far-field is proposed. The underwater radiated noise pattern is known to be predicted using the vibration signals and radiation efficiency of each surface patch. But it is very difficult to know radiation efficiency of each surface patch which is one of important factors to calculate the 3D underwater radiated noise pattern. Instead of using radiation efficiency of each patch, the underwater radiated noise level is modified with the total acoustic power of the vibrating structure. The suggested estimation method for underwater radiated noise pattern is discussed with numerical model.

Underwater Radiated Noise Analysis for An Unmanned Underwater Vehicle Using Power Flow Analysis (파워흐름해석법을 이용한 무인잠수정의 수중방사소음해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Lee, Sang-Young;Hwang, A-Rom;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.328-334
    • /
    • 2012
  • Power flow finite element method(PFFEM) combining power flow analysis(PFA) with finite element method is efficient for vibration analysis of a built-up structure, and power flow boundary element method(PFBEM) combining PFA with boundary element method is useful for predicting the noise level of a vibrating complex structure. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the unmanned underwater vehicle(UUV) in water. PFFEM is employed to analyze the vibrational responses of the UUV, and PFBEM is applied to analyze the underwater radiation noise. The vibrational energy of the structure is treated as an acoustic intensity boundary condition of PFBEM to calculate underwater radiation noise. Numerical simulations are presented for the UUV in water, and reliable results have been obtained.

Structure Vibration Analysis and Active Noise Control of Power Transformer (전력용변압기의 구조진동해석 및 능동소음제어)

  • Jeong, Yun-Mi;Choi, Eun-Ji;Kim, Young-Dal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1771-1776
    • /
    • 2013
  • Most cases of power transformer failure are caused by physical factors linked to the transient vibrations of multiple 120Hz combinations. In addition, the noise generated in the transformer from this vibration not only directly contributes to the worsening of the work environment but also causes psychological stress, resulting in the worsening of the workers efficiency and of the living environment of the inhabitants around the power plant. Thus, to remedy these problems, the mechanical-excitation forces working on a power transformer were categorized in this study, and the mechanical-damage mechanism was identified through the vibration transfer paths acting on machines or structures. In addition, a study on active noise cancellation in a transformer using the FXLMS algorithm was conducted to develop a system that is capable of multiple-sound/channel control, which resulted in the active noise reduction effect when applied on the field.