• Title/Summary/Keyword: vibration modes

Search Result 1,277, Processing Time 0.026 seconds

Investigation of receiving position in the measurement method for floor impact sound in a testing building (표준시험동 바닥충격음 측정위치에 대한 고찰)

  • Lee, Sin-Young;Yoo, Seung-Yup;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.964-968
    • /
    • 2007
  • The measurement of floor impact sound have been standardized in KS 2810-1 and 2. The height of receiving microphones position is specified in the standard as 1.2m which is almost half height of apartment rooms as a listening position. In this study, receiving positions are investigated by measuring the distribution of sound pressure levels at 792 receiving microphone positions in the standard testing building. Standard impact sources, tapping machine and impact ball, are driven on the center position in the source room where is located at the above floor. It was found that the distribution of sound pressure levels in the receiving room indicates significant deviation at different frequencies there is more than 5dB drop at 63Hz but 2dB rise at 125Hz at a height of 1.2m when the impact ball is driven, in the other case of a generating tapping machine there is more than 2dB rise at 125Hz at a height of 1.2m due to room modes.

  • PDF

Optimal reduction from an initial sensor deployment along the deck of a cable-stayed bridge

  • Casciati, F.;Casciati, S.;Elia, L.;Faravelli, L.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.523-539
    • /
    • 2016
  • The ambient vibration measurement is an output-data-only dynamic testing where natural excitations are represented, for instance, by winds and typhoons. The modal identification involving output-only measurements requires the use of specific modal identification techniques. This paper presents the application of a reliable method (the Stochastic Subspace Identification - SSI) implemented in a general purpose software. As a criterion toward the robustness of identified modes, a bio-inspired optimization algorithm, with a highly nonlinear objective function, is introduced in order to find the optimal deployment of a reduced number of sensors across a large civil engineering structure for the validation of its modal identification. The Ting Kau Bridge (TKB), one of the longest cable-stayed bridges situated in Hong Kong, is chosen as a case study. The results show that the proposed method catches eigenvalues and eigenvectors even for a reduced number of sensors, without any significant loss of accuracy.

Multiple wall dampers for multi-mode vibration control of building structures under earthquake excitation

  • Rahman, Mohammad Sabbir;Chang, Seongkyu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.537-549
    • /
    • 2017
  • One of the main concerns of civil engineering researchers is developing or modifying an energy dissipation system that can effectively control structural vibrations, and keep the structural response within tolerable limits during unpredictable events like earthquakes, wind and any kind of thrust load. This article proposes a new type of mass damper system for controlling wideband earthquake vibrations, called Multiple Wall Dampers (MWD). The basic principle of the Tuned Mass Damper (TMD) was used to design the proposed wall damper system. This passive energy dissipation system does not require additional mass for the damping system because the boundary wall mass of the building was used as a damper mass. The multi-mode approach was applied to determine the location and design parameters of the dampers. The dampers were installed based on the maximum amplitude of modes. To optimize the damper parameters, the multi-objective optimization Response Surface Methodology was used, with frequency response and maximum displacement as the objective functions. The obtained structural responses under different earthquake forces demonstrated that the MWD is one of the most capable tools for reducing the responses of multi-storied buildings, and this system can be practically used for new and existing building structures.

Diagnostics of Truss Structures via Vibration Monitoring (진동감시를 통한 트러스 구조물의 진단)

  • Park, Soo-Yong;Kim, Jeong-Tae;Kim, Yeon-Bok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.2 s.2
    • /
    • pp.63-74
    • /
    • 2001
  • In this paper the feasibility of Nondestructive Damage Detection (NDD) in large structures is demonstrated via simulating vibration monitoring of such structures. The theory of NDD for truss type structures is formulated. To examine the feasibility of the theory, a finite element model of a 3-D truss structure, which consists of sixteen bays and includes 246 elements, is developed to simulate damage. Four damage cases are simulated numerically and the cases range from the structure being damaged in one location to the structure being damaged in three locations. For the given modal parameters, this study reveals very good results for small amounts of damage as well as large damage.

  • PDF

Vibration Analysis of Rectangular Thick Plates Using Mindlin Plate Characteristic Functions (Mindlin판 특성함수를 이용한 직사각형 후판의 진동해석)

  • Lee, J.M.;Kim, K.C.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.85-95
    • /
    • 1996
  • An iterative Kantorovich method is presented for the vibration analysis of rectangular isotopic and orthotropic thick plates. Mindlin plate characteristic functions are derived in general forms by the Kantorovich method initially starting with Timoshenko beam functions consistent with the boundary conditions of the plate. Through numerical calculations of natural pairs, i.e. natural frequencies and corresponding modes, and dynamic responses of appropriate models, it has been confirmed that the presented method is superior to the Rayleigh-Ritz analysis or the FEM analysis in accuracy and computational efficiency.

  • PDF

A Study on the Dynamic Response of Cylindrical Wind Turbine Tower Considering Added Mass (부가수질량을 고려한 실린더형 풍력발전기타워의 동적응답연구)

  • Son, Choong-Yul;Lee, Kang-Su;Lee, Jung-Tak
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.348-358
    • /
    • 2008
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures is possibly only when the fluid-structures is understood, as the whole or part of the structure is in contact with water. Through the comparision between the experimental result and the finite element analysis result for a simple cylindrical model, it was verified that an added mass effects on the cylindrical structure. Using the commercial FEA program ANSYS(v.11.0), underwater added mass was superposed on the mass matrix of the structure. A frequency response analysis of forced vibration in the frequency considered the dynamic load was also performed. It was proposed to find the several important modes of resonance peak for these fixed cylindrical type structures. Furthermore, it is expected that the analysis method and the data in this study can be applied to a dynamic structural design and dynamic performance evaluation for the ground and marine purpose of power generator by wind.

  • PDF

Experimental Modal Analysis of Two Unequal Rectangular Plates Coupled with Fluid (유체로 연성되고 두께가 상이한 두 직사각 평판의 실험적 모드 해석)

  • Yoo, Gye-Hyoung;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2541-2549
    • /
    • 2002
  • In order to study the vibration characteristics of fluid-structure interaction problem, two rectangular plates coupled with bounded fluid were investigated. Experimental modal analyses were carried out to extract the modal parameters of the system. Additionally. finite element modal analyses performed using a commercial computer code, ANSYS. The FEM solutions were compared with the experimental solutions to verify the finite element model. As a result, the comparison between the experiment and FEM results showed excellent agreement. The transverse vibration modes, in-phase and out-of-phase, were observed alternately in the fluid-coupled system. The thickness effect of the plates on the fluid-coupled natural frequencies and mode shapes was investigated for two different cases with the identical thickness and the unequal thickness. It was found that the coupled natural frequencies increase with the thickness for the identical plates regardless of the mode phase. The experimental and the finite element analysis results showed that the out-of-phase mode shapes were deviated from the symmetrical mode shapes in the plate transverse direction fur the unequal plate thickness case.

Development of Efficient Numerical Method in Time-domain for Broadband Noise due to Turbulence-cascade Interaction (유입난류와 평판 캐스케이드 상호작용에 따른 광대역 소음 해석을 위한 효율적인 시간영역 수치기법의 개발)

  • Kim, Sang-Ho;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.477-482
    • /
    • 2009
  • An efficient time-domain numerical method for the analysis of broadband noise generation and propagation due to turbulence-cascade interaction is developed. The core algorithm of the present method is based on the B-periodicity of the acoustic response function of the flat-airfoil cascade to the ingesting gust (B denotes the number of airfoils in the cascade). To confirm this periodicity, gust-cascade interaction problem are solved by using the time-domain method, which shows that the incident gust with the circumferential mode number having the same remainders when divided by the airfoil number excites the same acoustic response of the cascade. Using the proposed fast algorithm with this periodicity, we show that the total computation time for the model broadband problem using the total 525 incident gust modes can be reduced to about 1/4 of that taken in using the previous time-domain program.

  • PDF

A Study on the minimizing of cutting depth in sub-micro machining (초정밀 절삭에서의 가공깊이 최소화에 관한연구)

  • 손성민;허성우;안중환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.376-381
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor affecting the qualities of machined parts. That is why diamond especially mono-crystal diamond, which has the sharpest edge among all other materials is widely used in micro-cutting. The question arises, given a diamond tool, what is the minimum (critical) depth of cut to get continuous chips while in the cutting process\ulcorner In this paper, the micro machinability around the critical depth of cut is investigated in micro grooving with a diamond tool, and introduce the minimizing method of cutting depth using vibration cutting. The experimental results show the characteristics of micro cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardeing around the critical depth of cut.

  • PDF

Comparison of Substructure Synthesis Methods based on Global and Local Coordinates (전역좌표계에 근거한 부분구조합성법과 국부좌표계에 근거한 부분구조합성법의 비교)

  • Kwak, Moon-K.;Na, Sung-Soo;Bae, Byung-Chan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.712-719
    • /
    • 2006
  • This paper is concerned with the comparison of substructure synthesis methods based on global and local coordinates. The substructure synthesis methods based on the global coordinates were first proposed for the dynamic analysis of complex structure and the substructure synthesis method based on the local coordinates was proposed to solve the dynamic problem of tree-like structure. However, the conceptual difference between two methods in solving the dynamic problem has never been explained. In this paper, a structure consisting of two beams is considered to show the conceptual difference of two methods. The dynamic formulation shows the characteristics and differences of two methods explicitly. The procedure for choosing proper substructure modes in each method is also explained in detail. In addition, the advantage of the substructure synthesis method based on the local coordinate system is discussed based on the numerical example. Numerical examples show how two methods are applied to the addressed problem.