• Title/Summary/Keyword: vibration model

Search Result 5,221, Processing Time 0.033 seconds

Study on Structural Durability Analysis at Bicycle Saddle (자전거 안장에서의 구조적 내구성 해석에 관한 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.104-112
    • /
    • 2013
  • This study investigates the structural analysis result with vibration and fatigue on 3 kinds of bicycle saddle models. When the static load applies on the upper plane of model, maximum stress becomes within the allowable stress in case of model 1. As the value of Stress or deformation becomes lower on the order of model types 1, 2 and 3, these models become more stabilized or safer at durability in this order. On the vibration analysis, model type 1 has the maximum stress or deformation more than 5 times by comparing with model type 1 or 2. Model type 1 becomes most excellent on vibration durability. As maximum displacement due to vibration happens in case of model type 3, it becomes unstabilized. But the stresses of model types 1, 2 and 3 become within the allowable stress and these models are considered to be safe. At the status of the severest fatigue load, model type 3 becomes safer than model type 1 or 2. This study result is applied with the design of safe bicycle saddle and it can be useful to improve the durability by predicting prevention against the deformation due to its vibration and fatigue.

A Study on Dynamic Vibration Absorber Using Zener's Model (Zener 모델을 사용한 동흡진기 특성 연구)

  • Oh, Il-Kwon;Lim, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.159-163
    • /
    • 2005
  • A dynamic vibration absorber using the Zener's model has been taken into account with respect to frequency response characteristics. The concept of the tuned mass damper with a single degree of freedom has been well applied for many industrial fields, because many researchers have extensively studied various basic characteristics, performance and optimization methods for long time. The Zener's model has an additional spring, which is connected between a damper and a mass, while the tuned mass damper with a single degree of freedom consists of a mass, a spring and a damper connected in parallel. In previous works, the basic performance and characteristics of the Zoner's model as a dynamic vibration absorber have not been investigated. In this study, the frequency response characteristics according to the parameter change of the Zener's model have been described. In order to find the optimum value of several parameters, we use iterative scheme with three dimensional frequency response diagram by MATLAB programming. Present results shows the Zener's model can give more good damping performance than the simple tuned mass damper, and the numerical of optimization method should be developed for the efficient vibration absorbtion.

  • PDF

Development of a new explicit soft computing model to predict the blast-induced ground vibration

  • Alzabeebee, Saif;Jamei, Mehdi;Hasanipanah, Mahdi;Amnieh, Hassan Bakhshandeh;Karbasi, Masoud;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.551-564
    • /
    • 2022
  • Fragmenting the rock mass is considered as the most important work in open-pit mines. Ground vibration is the most hazardous issue of blasting which can cause critical damage to the surrounding structures. This paper focuses on developing an explicit model to predict the ground vibration through an multi objective evolutionary polynomial regression (MOGA-EPR). To this end, a database including 79 sets of data related to a quarry site in Malaysia were used. In addition, a gene expression programming (GEP) model and several empirical equations were employed to predict ground vibration, and their performances were then compared with the MOGA-EPR model using the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2) and a20-index. Comparing the results, it was found that the MOGA-EPR model predicted the ground vibration more precisely than the GEP model and the empirical equations, where the MOGA-EPR scored lower MAE and RMSE, 𝜇 and 𝜎 closer to the optimum value, and higher R2 and a20-index. Accordingly, the proposed MOGA-EPR model can be introduced as a useful method to predict ground vibration and has the capacity to be generalized to predict other blasting effects.

Design and Analysis of an Active Vibration Isolation System (능동형 제진 시스템의 설계 및 해석)

  • Moon, Jun-Hee;Pahk, Heui-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.647-650
    • /
    • 2004
  • The modeling of an active vibration isolation system is accomplished by using the equivalent spring constant, mass and rotational Inertia of each component. The detailed model of the actuation module is successful for describing its frequency-domain performance but also too complicated to implement it to actual system for control so that the order of the model is reduced up to the degree that preserves its characteristic in the low frequency range. The reduced model is suitable for identifying the unknown system parameters such as damping constants of components. The overall isolation system is described by using the reduced model of the actuation module. The accurate model ing and system parameter identification that is essential for the control of the active vibration isolation system is attained successfully.

  • PDF

Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.527-538
    • /
    • 2010
  • This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified.

Identification of vibration System With Stiffness and Damping Nonlinearity (비선형 강성 및 감쇠 특성을 갖는 진동 시스템의 규명)

  • 이병림;이재응
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.144-152
    • /
    • 2000
  • The identification of a nonlinear vibration system based on the time domain parametric model has been widely studied in recent years. In most of the studies, the NARMAX model has been used for the identification of a nonlinear system. However, the computational load for the identification with this model is quite heavy. In this paper, a new modeling procedure for nonlinear system identification in discrete time domain is proposed. The proposed model has less initial nonlinear terms than NARMAX model, and the terms in the proposed model are derived from physically meaningful way. The performance of the proposed method is evaluated through the simulation, and the result shows that the proposed model can identify the nonlinear characteristics of the vibration system very will less computational effort.

  • PDF

System Identification of Real-Scale Structures Using Forced Vibration Test (실물크기 구조물의 강제진동 실험을 통한 시스템 식별)

  • Youn, Kyung-Jo;Lee, Sang-Hyun;Park, Eun-Churn;Yu, Eun-Jong;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.195-200
    • /
    • 2007
  • System identification of real-scale structure is performed using forced vibration test. There exist various techniques available for identifying the dynamic characteristis of structures using dynamic and static measurements. In this study, The finite element(FE) model of the structure is analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. forced vibration tests showed that Hybrid Mass Damper induced floor responses coincided with the earthquake induced ones which was numerically calculated based on the updated FE model.

  • PDF

Modal Analysis and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 모달 해석 및 진동 제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.299-304
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded Macro-fiber Composite (MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

  • PDF

Modal Analysis and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 모달 해석 및 진동 제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.832-840
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded macro-fiber composite(MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

Nonlinear Vibration Analysis of Porous Thin Plate with Wire Impact Damping (와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석)

  • 김성대;김원진;이부윤;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.341-348
    • /
    • 2001
  • In this study, nonlinear vibration analysis of the cylindrical orthotropic porous thin plate under V-shaped tension distribution with wire impact damping is considered. We make dynamic model of the plate under the tension using commercial FEM code and reduce the number of its degrees of freedom using dynamic condensation. The dynamic model of wire is obtained as lumped mass model from string equation. And then we analyze the nonlinear vibration of the plate including the impact phenomenon between the plate and the wire using the reduced mass and stiffness matrices of the plate and lumped model of the wire. The contact phenomenon between them can be described by impact contact elements composed of contact stiffness coefficients from Hertzian contact theory and contact damping coefficients from restitution coefficient between them. And we discussed the results of nonlinear vibration analysis for variations of their design parameters.

  • PDF