• Title/Summary/Keyword: vibration frequency measurement

Search Result 588, Processing Time 0.027 seconds

Improvement of the Vibration Characteristics for the Oil Pipe Support Structure of the Crude Oil Carrier (설계개선에 의한 원유운반선 송유관 지지구조물의 진동 저감)

  • Kim Heui-Won;Park Jin-Hwa
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.69-75
    • /
    • 2005
  • Recently it was reported that the vibration problems on the oil pipe support structure of the crude oil carrier were occurred. in order to investigate the vibration characteristics and the causes of the vibration occasionally. the vibration measurements and impact tests for the oil Pipe structure were carried out. From the measurement results severe vibration was caused by the resonance between the transversal natural frequency of the structure and $6^{th}$ order excitation force of the main engine. Providing the proper countermeasures a series of the vibration analyses were carried out based on the measurement results. From the analysis results, it was concluded that the vibration characteristics of the oil pipe structure were affected by the oil pipes, support structure itself, upper deck structure and the installation spaces and the standard design was established for the crude oil carriers.

  • PDF

Vibration Characteristics and Performance of Cantilever for Non-contact Atomic Force Microscopy (비접촉 원자간력 현미경의 탐침 캔틸레버 진동 특성 및 측정 성능 평가)

  • 박준기;권현규;홍성욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.495-502
    • /
    • 2004
  • This paper presents the vibration analysis and the performance evaluation of cantilevers with probing tips for non-contact scanning probe microscopy. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made for the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

Performance Evaluation of Non-contact Atomic Force Microscopy Due to Vibration Characteristics of Cantilever (비접촉 원자간력 현미경의 탐침 외팔보 진동특성에 따른 성능 평가)

  • 박준기;권현규;홍성욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.263-268
    • /
    • 2003
  • This paper presents a result of performance evaluation fur non-contact scanning probe microscopy with respect to the vibration characteristics of cantilevers with tips. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made fur the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

  • PDF

Modal Testing of Mechanical Structures Subject to Operational Excitation Forces

  • Gade, Svend;Moller, Nis B.;Herlufsen, Henrik;Brincker, Rune;Andersen, Palle
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1162-1165
    • /
    • 2001
  • Operational Modal Analysis also known as Output Only Modal Analysis has in the recent years been used for extracting modal parameters of civil engineering structures and is now becoming popular for mechanical structures. The advantage of the method is that no artificial excitation need to be applied to the structure or force signals to be measured. All the parameter estimation is based upon the response signals, thereby minimising the work of preparation for the test. This test case is a controlled lab set-up enabling different parameter estimation methods techniques to be used and compared to the Operational Modal Analysis. For Operational Modal Analysis two different estimation techniques are used: a non-parametric technique based on Frequency Domain Decomposition (FDD), and a parametric technique working on the raw data in time domain, a data driven Stochastic Subspace Identification (SS!) algorithm. These are compared to other methods such as traditional Modal Analysis.

  • PDF

Human Sensitivity Responses to Vibrotactile Stimulation on the Hand : Measurement of Differential Thresholds (진동식 촉각 자극에 대한 손의 상대적 민감도 반응)

  • Lee, Seong-Il
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 1999
  • This study investigated human operator's perceptual and psychophysical responses to vibrotactile stimulation on various parts of the hand. Using a small vibrotactile display, the effects of three mechanical parameters consisting vibrotactile stimulations, i.e., vibration frequency, pulse-width modulation duty cycle, and number of contactors, on differential thresholds were examined at five different loci of the hand. It was observed that differential threshold varies with vibration frequency and number of active contactors. Differential sensitivity was the greatest at the vibration frequency of 120 Hz. The differential sensitivity was not found to be affected by loci on the hand. The area of stimulation on the hand was also found to be significant in that the sensitivity increased with the number of active contactors. It should be noted that the conclusions from this study generally correspond to those from the previous study on the absolute sensitivity. which means that tactile sensitivity to vibrotactile stimulations can be controlled with a systematic and consistent passion for emulating normal everyday contact on human hands in teleoperation and virtual reality applications.

  • PDF

Preliminary study on the Condition Monitoring of Wind-turbine Gearbox (풍력발전기용 증속기 상태 모니터링에 관한 기초 연구)

  • Park, Young-Jun;Lee, Jae-Jeong;Lee, Geun-Ho;Nam, Yong-Yun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.343-346
    • /
    • 2008
  • To improve the reliability and extend the life for a wind-turbine gearbox, the gearbox needs to be monitored and analysed exactly. This study was conducted to analyze and detect the gearbox conditions when lubricating oil contaminated by wear particles was used. Characteristics of the gearbox failure by wear particles were monitored simultaneously by the on-line measurement sensor of vibration, oil condition and temperature. For the detail vibration analyses, frequency analysis(FFT) was performed. The results of the study were summarized as follows: Vibrational signal was found sensitive to abnormal changes of the gearbox conditions when lubricant was contaminated by wear particles. Also, using frequency analysis for the harmonics of gear mesh frequency(GMF), it is found that the failure of gearbox was caused by the damages of meshing gears. However, temperature and oil condition measuring signals were found not so effective to detect any gearbox failure by oil contamination.

  • PDF

Human Sensitivity Responses to Vibrotactile Stimulation on the Hand : Measurement of Absolute Thresholds (진동식 촉각 자극에 대한 손의 절대 민감도 반응)

  • Lee, Seong-Il
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 1998
  • The objective of this study is to investigate hwnan operator's perceptual and psychophysical responses to vibrotactile stimulation on various parts of the hand. Using a small vibrotactile display, five different loci of the hand along with two other mechanical parameters consisting vibrotactile stimulations, which are vibration frequency and number of active contactors, were examined for the effects on absolute thresholds. All test variables were found to have significant effects on thresholds. It was observed that absolute threshold is a function of vibration frequency and number of active contactors. Tactile sensitivity was the greatest at the vibration frequency of 240 Hz, and the fingertip was found to be the most sensitive locus on the hand. The area of stimulation on the hand was also found to be significant in that the sensitivity increased with the number of active contactors. The results of the study generally supported those of other previous studies. It should also be noted, however, that the conclusions from the study should be limited to the absolute sensitivity, not to the suprathreshold intensities of normal everyday contact with the hands.

  • PDF

Measurement of Absolute Magnitude and Position of HDD Unbalance based on Mobility (모빌리티 측정을 통한 하드디스크의 Unbalance 검출 및 보정방법)

  • Choi, Hyun;Kim, In-Woong;Lee, Jae-Won;Jeong, Yong-Koo;Choi, Jung-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.358-362
    • /
    • 2002
  • The HDD unbalance, with higher rotational speed, is directly influenced by the mechanical assembly allowance between clamping disk and platter disk. The low frequency structural vibration induced by the unbalance force finally gives rise to the structure borne noise of the personal computer. To meet the noise and vibration requirements, the absolute unbalance mass of HDD needs to be measured and adjusted in the disk assembling stage. This study introduces the measurement methods of the absolute magnitude and position of the unbalance mass of HDD based on the mobility and acceleration orbit. The absolute unbalance mass can be obtained by the acceleration responses and the mobility of the mechanical part, while the position of the unbalance mass ran be obtained by the rotation acceleration orbit.

  • PDF

Estimation of Sensitivity Axis Offset of an Accelerometer for Accurate Measurement of the 6 DOF Human Head Motion (인체 머리부 6 자유도 운동 측정의 신뢰성 향상을 위한 가속도계 감도축의 옵셋(offset) 추정)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon;Jang, Han-Kee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.905-912
    • /
    • 2008
  • Notion sickness is well known to be caused by long time exposure to the very low frequency motion in the multiple axes of human body Since the vestibular system for the perception of low frequency motion is located in the head, accurate measurement of 6 degree of freedom head motion is of great importance. In this study, the measurement system consisting of a safety helmet and 9 translational accelerometers was constructed for the estimation of 3 translational and 3 rotational motions of human head. Since estimation errors of 3 rotational components can be significantly magnified even by small offset of the sensitivity axis from the geometric center of an accelerometer, accurate measurement of sensitivity axis must be preceded. The method for accurate estimation of the offset was proposed, and the effect of offset on the estimation of angular acceleration was investigated.

Measurement of acoustic impedance of porous woven hoses in engine intake systems in the presence of mean flow (유체의 흐름이 있는 엔진 흡기계용 직조관의 음향 임피던스 측정 및 전달손실 예측)

  • 이정권;박철민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.996-1000
    • /
    • 2002
  • A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake roaring. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. Because of its peculiar acoustical and structural characteristics, the accurate measurement of the wall impedance ofa porous woven hose is not easy. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement, and, as a result, it is very simple. The measured TL for samples with arbitrary conditions, arbitrary porous frequency, arbitrary length, and arbitrary mean flow condition, are in reasonably good agreement with values predicted from curve-fitted impedance data.

  • PDF