• Title/Summary/Keyword: vibration effect

검색결과 3,854건 처리시간 0.031초

인체진동이 뇌파변동리듬에 미치는 영향평가 (Evaluation on the Effect of Whole Body Vibration on EEG Frequency-Fluctuation)

  • 민병찬;김형욱;김지관
    • 산업경영시스템학회지
    • /
    • 제30권4호
    • /
    • pp.71-77
    • /
    • 2007
  • In this study, reactions of central nervous systems working against different conditions of forced frequency and acceleration were measured and analyzed. The experiment are conducted with health men. The steady vibration conditions of forced frequency (0.315m/s2-1.0Hz, 0.315m/s2-10Hz and 10Hz-1.0m/s2) are used and the waves of EEG (Electroencephalogram) are measured. As a result, this paper shows that the ${\alpha}-wave$ of frontal lobe transfers from low to high frequency band under the vibration environment. Additionally, the average frequency of ${\alpha}-wave$ is higher under the vibration than under non-vibration environment. In the case of forced frequency of 1.0Hz-0.315m/s2, the feeling with the vibration are nearly same compared with the non-vibration condition. But in the case of 10Hz-1.0m/s2, uncomfortable feeling increased compared with the non-vibration condition. This study also shows the relationship between fluctuation slop and feeling. From this study, it is found that the effect of vibration on human depends on acceleration characteristics. Highly accelerating vibration is more harmful to human.

Forced vibration analysis of cracked functionally graded microbeams

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • 제6권1호
    • /
    • pp.39-55
    • /
    • 2018
  • Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked functionally graded microbeams are presented.

단층래티스돔의 자유진동해석 (Free-vibration Analysis of Single-Layer Latticed Domes)

  • 박정우;정환목;권영환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.89-94
    • /
    • 1994
  • Latticed domes take form a curved surface by arranged members with certain patterns. For this reason, it is possible for the characteristics of vibration to complicate by change of various parameters of dome; grid-pattern, boundary condition and ratio of radius-height etc. Therefore, it is important to clarify the effect by these parameters before generalized dynamic response analysis. So this study deals with free vibration analysis of latticed domes and makes clear an effect of shape coefficient, that is, geometrical characteristics of latticed domes, on the vibration characteristics.

  • PDF

압전 비틀림 변환기의 진동특성 해석 (Vibration Characteristics of Piezoelectric Torsional Transducers)

  • 권오수;김진오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1280-1285
    • /
    • 2000
  • The paper deals with a theoretical study on the vibrational characteristics of piezoelectric torsional transducers. The differential equations of piezoelectric torsional motion have been derived in terms of the circumferential displacement and the electric potential. Applying mechanical and electrical boundary conditions has yielded the characteristic equations of natural vibration in several transducer types. Numerical results have clarified the effect of the piezoelectric phenomenon on the mechanical resonance and the effect of the elastic block of a Langevin-type transducer on the natural frequency.

  • PDF

플라즈마 파암공법의 진동분석에 관한 기초적인 연구 (A Fundamental Study about Vibration Analysis of Plasma Rock Fragmentation Method)

  • 윤지선;김상훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.129-136
    • /
    • 2001
  • Blasting method is used most engineering works for rock excavation. Blasting method is done much to upgrade of operation efficiency, contraction of construction period than other method. But blasting method happens damage by blasting vibration, nose and scattering. Therefore this study examined about effect, characteristic and application of Plasma method. To confirm effect measured vibration, noise and frequency, and analyzed data compare with general blasting.

  • PDF

터널내 열차주행시 절리영향을 고려한 지반진동 (Groundborne Vibration from Moving Train Loads in Tunnels Considering the Effect of Joints)

  • 이종세;최기석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.174-181
    • /
    • 2003
  • The groundborne vibration from moving train loads in tunnels could cause damages on structures and make people uneasy. With an aim at developing basis for effective screening measures, this paper attempts to study the characteristics of propagation and attenuation of groundborne vibration from moving train loads in tunnels considering the effect of joints. The wave propagation problem is modeled by a commercial code FLAC and the results are compared to those from using a finite-element-based code DIANA. It is shown that the groundborne vibration is affected significantly by the location and direction of joints.

  • PDF

유체 슬로싱모드가 탱크의 진동에 미치는 영향에 대한 연구 (A Study on Vibration Characteristics with Sloshing Mode Effect in Water Tank Structure)

  • 배성용
    • 대한조선학회논문집
    • /
    • 제40권6호
    • /
    • pp.88-95
    • /
    • 2003
  • Liquid storage rectangular tank structures are used in many fields of airplane and marine engineering. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance. Therefore it is essentially important to estimate vibration characteristics of tank structures. Many Investigators studied the vibration of cylindrical and rectangular tank structures containing still fluid. In general, the eigenbehavior of interior liquid is characterized by the sloshing mode while that of the structure by the bulging mode. However, the structure deformation to the sloshing mode and the liquid free-surface fluctuation to the bulging mode have been neglected in the classical added-mass computation. in the present paper, we study the vibration characteristics with sloshing mode effect.

Vibration analysis of FGM beam: Effect of the micromechanical models

  • Hadji, Lazreg
    • Coupled systems mechanics
    • /
    • 제9권3호
    • /
    • pp.265-280
    • /
    • 2020
  • In this paper, a new refined hyperbolic shear deformation beam theory for the free vibration analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equations of motion are derived from the Hamilton's principle. Navier type solution method was used to obtain frequencies, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the free vibration response of a simply supported FG beams.

Parametric vibration analysis of single-walled carbon nanotubes based on Sanders shell theory

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Taj, Muhammad;Ayed, Hamdi;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제10권2호
    • /
    • pp.165-174
    • /
    • 2021
  • This paper based on Sanders theory aims to investigate the vibration of SWCNTs considering the clamped-simply supported, clamped-free, clamped-clamped and simply supported-simply supported end conditions. After developing the governing equation of the objective system, the Rayleigh-Ritz technique is implemented for the purpose of obtaining the frequency equation in the eigen form. In addition, the applicability of this model for the analysis of vibration of CNTs is examined with the effect of length and ratio of height-to-radius. A detailed description of different types of SWCNTs with different indices is provided in the theoretical methodology. The effect of extended length is stimulated with increasing the radii and the model is effective because it also predicts the effect of thickness on vibration of SWCNTs. For different boundary conditions, the present results are verified with earlier literature.

Effect of axial stretching on large amplitude free vibration of a suspended cable

  • Chucheepsakul, Somchai;Wongsa, Sanit
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.185-197
    • /
    • 2001
  • This paper presents the effect of axial stretching on large amplitude free vibration of an extensible suspended cable supported at the same level. The model formulation developed in this study is based on the virtual work-energy functional of cables which involves strain energy due to axial stretching and work done by external forces. The difference in the Euler equations between equilibrium and motion states is considered. The resulting equations govern the horizontal and vertical motion of the cables, and are coupled and highly nonlinear. The solution for the nonlinear static equilibrium configuration is determined by the shooting method while the solution for the large amplitude free vibration is obtained by using the second-order central finite difference scheme with time integration. Numerical examples are given to demonstrate the vibration behaviour of extensible suspended cables.