• Title/Summary/Keyword: vibration and sound

Search Result 2,241, Processing Time 0.027 seconds

Prediction and analysis of structural noise of a box girder using hybrid FE-SEA method

  • Luo, Wen-jun;Zhang, Zi-zheng;Wu, Bao-you;Xu, Chang-jie;Yang, Peng-qi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.507-518
    • /
    • 2020
  • With the rapid development of rail transit, rail transit noise needs to be paid more and more attention. In order to accurately and effectively analyze the characteristics of low-frequency noise, a prediction model of vibration of box girder was established based on the hybrid FE-SEA method. When the train speed is 140 km/h, 200 km/h and 250 km/h, the vibration and noise of the box girder induced by the vertical wheel-rail interaction in the frequency range of 20-500 Hz are analyzed. Detailed analysis of the energy level, sound pressure contribution, modal analysis and vibration loss power of each slab at the operating speed of 140 km /h. The results show that: (1) When the train runs at a speed of 140km/h, the roof contributes more to the sound pressure at the far sound field point. Analyzing the frequency range from 20 to 500 Hz: The top plate plays a very important role in controlling sound pressure, contributing up to 70% of the sound pressure at peak frequencies. (2) When the train is traveling at various speeds, the maximum amplitude of structural vibration and noise generated by the viaduct occurs at 50 Hz. The vibration acceleration of the box beam at the far field point and near field point is mainly concentrated in the frequency range of 31.5-100 Hz, which is consistent with the dominant frequency band of wheel-rail force. Therefore, the main frequency of reducing the vibration and noise of the box beam is 31.5-100 Hz. (3) The vibration energy level and sound pressure level of the box bridge at different speeds are basically the same. The laws of vibration energy and sound pressure follow the rules below: web

Outdoor Noise Prooagation : Sound Tracing Algorithm (옥외 소음의 전파 : 음 추적 알고리즘)

  • 박지헌;김정태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.439-444
    • /
    • 2001
  • We provide methods to simulate noise propagation for an outdoor environment. Forward tracing method traces sound vectors from sources to receivers while geometry based computation finds all possible sound propagation between sources and receivers geometrically. We discuss defects in relying on a forward tracing method, and suggest a geometry based method. Geometry based method considers all possible direct and indirect(propagation via limited number of reflections) sound propagation saving computational time compared to forward sound tracing. Our simulation results are visualized using VRML(Virtual Reality Modeling Language).

  • PDF

Improving Sound Quality of the Exhaust System Using Convolution Analysis (자동차 배기계에 대한 음질 향상)

  • Yunseon Ryu;Kim, Yoon-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1148-1150
    • /
    • 2002
  • The exhaust system could be a dominant acoustical source in the passengers vehicle. It would be very important to obtain the acoustically good exhaust system, in order to control the cabin interior sound in automotive. In order to obtain the acoustically good exhaust system in automotive, many kinds of exhaust system should be measured, and simultaneously those results should be compared by the sound quality parameters. In this paper, in order to develop the methodology determining sound quality parameters, acoustic simulator is introduced, combining the time domain analysis and convolution analysis. As an example to verify the reliability of this method, several kinds of measurements are carried out, and the acoustically good exhaust system is selected, based on this proposed method.

  • PDF

A Study on Performance Improvement of Sound Absorbing Noise Barrier (흡음형 방음벽의 성능향상에 관한 연구)

  • 김현실;김재승;강현주;김봉기;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.849-854
    • /
    • 2001
  • A study on performance of the sound absorbing noise barrier is presented. Noise barrier of sound absorbing type is composed of the front panel, sound absorbing material, and back panel. For allowing sound path, front panel is usually perforated. The performance of the noise barrier is governed by the opening ratio of the perforated panel, sound absorption coefficient of the sound absorbing material. In this study, the effects of the opening ratio, diameter of the hole, thickness of the sound absorbing material are investigated. It is found that the thickness of the sound absorbing material must be at least 50 mm to ensure the required minimum NRC value 0.70, and the opening ratio is greater than 0.2. It is shown that the thickness of the back panel is crucial in providing required STL (Sound Transmission Loss) value. The performance of the developed noise barrier is measured, where its sound absorbing coefficient and sound transmission loss satisfy the criteria.

  • PDF

A KS Draft of the Measurement of Sound Insulation in Buildings and of Building Elements Using Sound Intensity: Laboratory Conditions (Sound Intensity를 이용한 건물부재의 차음성능 실험실 측정방법 KS 규격 제정안)

  • Jung, Sung-Soo;Kook, Chan;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.961-964
    • /
    • 2002
  • A KS draft of the measurement of sound insulation in buildings and of building elements using sound intensity: laboratory conditions is proposed. It is based on ISO 15186-1. In order to make it as a KS, some contents are carefully tested.

  • PDF

Sound Quality analysis for Fuel Filler Door open system (연료주입구 Door open 음의 음질분석)

  • Park, D.C.;Lee, D.H.;Jung, S.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1467-1472
    • /
    • 2000
  • This paper describes an investigative study for Fuel Filler Door open sound. Using statistical method of analyzing jury preference data, we extract important factor for subjective feeling and also define sound quality index and sound quality guideline for development of fuel filler system.

  • PDF

Booming Index Development of Interior Sound Quality on a Passenger Car Using Artificial Neural Network (신경망회로를 이용한 부밍음질의 인덱스 개발에 관한 연구)

  • 이상권;채희창;박동철;정승균
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.445-451
    • /
    • 2003
  • Booming sound is one of the most important interior sound of a passenger car. The conventional booming noise research was focused on the reduction of the A-weighted sound pressure level. However A-weighted sound pressure level cannot give the whole story about the booming sound of a passenger car. In this paper, we employed sound metrics, which are the subjective parameters, used in psycoacoustics. According to recent research results. the relation between sound metrics and subjective evaluation is very complex and has nonlinear characteristics. In order to estimate this nonlinear relationship, artificial neural network theory has been applied to derivation of sound quality index for booming sound of a passenger car.

APPLICATION OF SOUND INTENSITY METHOD TO NOISE CONTROL ENGINEERING AND BUILDING ACOUSTICS

  • Tachibana, Hideki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.7-15
    • /
    • 1995
  • Sound pressure and particle velocity are the most essential quantities prescribing a sound field; they correspond to voltage and electric current respectively, in electric system. As electric power is the product of voltage and electric current, sound intensity is the product of sound pressure and particle velocity and it means the acoustic power passing through a unit area in a sound field. Although the definition of sound intensity is very simple as mentioned above, the method of measuring this quantity has not been realized for a long time, because it has been very difficult to measure the particle velocity simultaneously with the sound pressure. Owing to the recent development of such technologies as transducer production and digital signal processing, it has finally been realized. According to the sound intensity(SI) method, the sound power flow in an arbitrary sound field can be directly measured as a vector quantify. In this paper, the principle of the SI method is briefly explained at first and some examples of its application made in the author's laboratory are introduced.

  • PDF

Dynamic Characteristics of Electric Train Driving System (전기동차 구동부의 동특성)

  • 이봉현;최연선
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.329-336
    • /
    • 1998
  • The characteristics of vibration and sound signals which occurs at the driving system of electric train are investigated in this study since the vibration of driving system is one of the main sources of vibration and sound in electric train. The vibration signals are changed its signal patterns during the transmission from the source to passengers due to noise or several unknown factors. To avoid the complexity of actual signals of electric train, signals from experimental apparatus of motor/gear driving system are analyzed to find the appropriate method of analysis and to characterize the signal patterns. The used methods are waterfall diagram, transfer function and modal analysis. The results shows that the vibration signals are usually originated from motor bearing and gear meshing and these signals are transmitted to bottom or bogie. Also, the sound signal is similar to the vibration of bottom or bogie, but it is not so clear to figure out the source of vibration.

  • PDF

Comparison of Rating Methods for the Floor Impact Sound Insulation Performance (바닥충격음 차단성능 평가방법의 상호비교)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • In this study, we compared and analyzed the floor impact sound insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels and arithmetic average. On-site floor impact sound pressure levels of living room and room are measured. The results of this study are 1)the rating using reversed A-weighting curve for heavy-weight impact sound's standard deviation is lower than that of light-weight impact sound, 2)the number of rating using A-weighted sound pressure levels and arithmetic average is larger than that of using reversed A-weighting curve, and 3)the number of rating using reversed A-weighting curve mainly depends on impact sound pressure level of 63Hz in heavy-weight impact sound.

  • PDF