• Title/Summary/Keyword: vibration active control

Search Result 1,036, Processing Time 0.03 seconds

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

Identification of Optimal Control Parameters for a Pneumatic Active Engine Mount System (공압식 능동형 엔진마운트시스템의 최적 제어매개변수 식별)

  • Kim, Il-Jo;Lee, Jae-Cheon;Choi, Jae-Yong;Kim, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.30-37
    • /
    • 2012
  • Pneumatic Active Engine Mount(PAEM) with open-loop control system has been developed to reduce the transmission of the idle-shake vibration induced by engine effectively and economically. A solenoid valve installed between PAEM and vacuum tank is on-off switched by the Pulse Width Modulate(PWM) control signal to decrease the dynamic stiffness of the engine mount. This paper presents the methodology to identify the optimal values of control parameters of a PAEM, i.e, turn-on timing and duty ratio of PWM signal for 6 different idle driving conditions. A scanning algorithm was first applied to the vehicle test to obtain the approximate optimal control parameters minimizing the vibration at front seat rail and at steering wheel. Then the PAEM system identification was fulfilled to find accurate optimal control parameters by using multi-layer neural networks of Levenberg-Marquardt algorithm with vehicle test data.

Transverse Vibration Control of an Axially Moving String by Velocity Boundary Control (속도경계제어를 이용한 축방향 주행 현의 횡진동 제어)

  • Ryu, Du-Hyeon;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.135-144
    • /
    • 2001
  • In this study, the time varying boundary control using the right boundary transverse motion is suggested to stabilize the transverse vibration of an axially moving string on the basis of the energy flux between the moving string and the boundaries. The effectiveness of the active velocity boundary control is showed through the FDM simulation results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. Optical sensor system for measuring the transverse vibration of an axially moving string is developed, and the angle of the incident wave to the right boundary, which is the input of the velocity boundary controller, is obtained. Experimental research is carried out to examine the validity and the performance of the transverse vibration control using the suggested velocity right boundary control scheme.

A Study of Rotor Vibration Reduction using Fuzzy Magnetic Damper System (퍼지 마그네틱 댐퍼를 사용한 회전체 진동의 저감 연구)

  • Lee, Hyeong-Bok;Kim, Yeong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.748-755
    • /
    • 2001
  • This paper concerns rotor vibration reduction using magnetic damper system. The fuzzy control logic is utilized to fulfill desired motion. The fuzzy system structure and membership function were first determined by simulation results. The researched control logic contains two fuzzy controller : reference position variation according to the rotor whirling status and error compensation algorithm to minimize the rotor vibration due to unbalance and unstable fluid film force. The Sugeno type output membership function was utilized by several trials and optimized membership function constants were selected from experiments. The experimental results show that the proposed method effectively control and reduce the rotor vibration with fluid film bearings.

Robust Vibration Control for a Building with Parameter Uncertainty (파라미터 불확실성을 고려한 건물의 견실 진동 제어)

  • 최재원;김신종;이만형
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.575-583
    • /
    • 2000
  • In this paper, we design a vibration control system that includes a 3-D.O.F. mass-spring-damper structure for the analytical model of a building that is excited at the base of this structure by an external dynamic force, and one Active Mass Damper(AMD) on the top of this structure to generate control forces fro attenuation of the structural response. Two robust controllers based on $\mu$-synthesis and H$\infty$ optimal control are designed for the structural system to show that the performance of a control system can be degraded by some parameter uncertainties such as mass, stiffness coefficients, and/or damping coefficients. The performance of the two controllers are compared in terms of nominal performance, robust stability and robust performance by simulations.

  • PDF

Characteristics and Dynamic Modeling of MR Damper for Semi-active Vibration Control (준능동 진동 제어를 위한 MR 감쇠기의 동적 모델링을 통한 특성분석)

  • Heo, Gwang-Hee;Jeon, Seung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.61-69
    • /
    • 2013
  • This research is aimed to evaluate characteristics and dynamic modeling of MR damper for semi-active vibration control. A MR damper of semi-active type was designed and made for the purpose of controlling the vibration of a real-size model structure. Usually a semi-active control system equipped with a MR damper requires a dynamic model which expresses numerical data about the damping capacity and dynamic characteristics generated by a MR damper. To fulfil the requirement, a Power model and a Bingham model were particularly employed among many dynamic models of MR damper. Those models being contrasted with other ones, a dynamic test was carried out on the developed MR damper. In the test, excitation frequencies were conditioned to be 0.15 Hz, 1.0 Hz, and 2.0 Hz, and three different currents were adopted for each frequency. From these test results, it was found that displacement affected control capacity of the MR damper. The test results led to the identification of model variables for each dynamic model, on the basis of which a force-speed relation curve and expected damping force were derived and contrasted to those of the developed MR damper. Therefore, it was proven that the MR damper designed and made in this research was effective as a semi-active controller, and also that displacement of 2mm at minimum was found to be secured for vibration control, through the test using various displacements.

Beam structural system moving forces active vibration control using a combined innovative control approach

  • Lee, Ming-Hui
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.121-136
    • /
    • 2013
  • This study proposes an innovative control approach to suppress the responses of a beam structural system under moving forces. The proposed control algorithm is a synthesis of the adaptive input estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. Using the synthesis algorithm the moving forces can be estimated using AIEM while the LQG controller offers proper control forces to effectively suppress the beam structural system responses. Active control numerical simulations of the beam structural system are performed to evaluate the feasibility and effectiveness of the proposed control technique. The numerical simulation results show that the proposed method has more robust active control performance than the conventional LQG method.

Velocity feedback for controlling vertical vibrations of pedestrian-bridge crossing. Practical guidelines

  • Wang, Xidong;Pereira, Emiliano;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.95-103
    • /
    • 2018
  • Active vibration control via inertial mass actuators has been shown as an effective tool to significantly reduce human-induced vertical vibrations, allowing structures to satisfy vibration serviceability limits. However, a lot of practical obstacles have to be solved before experimental implementations. This has motivated simple control techniques, such as direct velocity feedback control (DVFC), which is implemented in practice by integrating the signal of an accelerometer with a band-pass filter working as a lossy integrator. This work provides practical guidelines for the tuning of DVFC considering the damping performance, inertial mass actuator limitations, such as stroke and force saturation, as well as the stability margins of the closed-loop system. Experimental results on a full scale steel-concrete composite structure (behaves similar to a footbridge) with adjustable span are reported to illustrate the main conclusions of this work.

Active noise control in the global region of a duct using smart foam and FIR filter optimization of cancellation Path (스마트 폼을 이용한 덕트 내 넓은 영역에서의 소음 제어 및 상쇄 경로 최적화)

  • 한제헌;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.525-529
    • /
    • 2002
  • ANC technic can overcome the limited performance of passive noise control at the low frequency range. But it has the local quiet control region in general. In this paper, it is discussed that the global noise control in a circular duct using a ring type smart foam and a porous material. LMS algorithm and RLS algorithm are used to find optimal orders of cancellation path. Experiments are performed to compare the efficiency of RLS algorithm with that of LMS algorithm.

  • PDF

Accelerometer Signal Processing for a Helicopter Active Vibration Control System (헬리콥터 능동진동제어시스템 가속도 신호 처리)

  • Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.863-871
    • /
    • 2017
  • LMS (least mean square) algorithm widely used in the AVCS (active vibration control system) of helicopters calculates control input using the forward path transfer function and error signal. If the error signal is sinusoidal, it can be represented as the combination of cosine and sine functions with frequency and phase synchronized with the reference signal. The control input also has the same frequency, therefore control algorithm can be simply implemented if the cosine and the sine amplitudes of the control input are calculated and the frequency and phase of the reference signal are used. Calculation of the control input is implemented as simple matrix operation and the change of the control command is slower than the frequency of the error signal, consequently control algorithm can be operated at lower frequency. The signal processing algorithm extracting cosine and sine components of the error signals are modeled using Simulink and PIL (processor-in-the-loop) mode simulation was executed for real-time performance evaluation.