• Title/Summary/Keyword: vibration active control

Search Result 1,036, Processing Time 0.026 seconds

Design of Hybrid Mount Using Rubber Element and Piezoelctric Actuator with Application to Vibration Control (고무와 압전작동기를 이용한 하이브리드 마운트의 설계 및 진동제어 응용)

  • Yook, Ji-Yong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.919-924
    • /
    • 2006
  • This paper presents active vibration control using a hybrid mount which consists of rubber element and the piezostack actuator. After identifying stiffness and damping properties of the rubber element and piezoelectric elements, a mechanical model of the hybrid mount is established. The mount model is then incorporated with the vibration system, and the governing equation of motion is obtained in a state space. A sliding mode controller and LQG controller are designed in order to actively attenuate the vibration of the system subjected to high frequency and small magnitude excitations. Control responses such as acceleration and force transmission through the hybrid mount are evaluated by computer simulation.

  • PDF

Design of Hybrid Mount Using Rubber Element and Piezoelctric Actuator with Application to Vibration Control (고무와 압전작동기를 이용한 하이브리드 마운트의 설계 및 진동제어 응용)

  • Yook, Ji-Yong;Sung, Kum-Gil;Moon, Seok-Jun;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.391-397
    • /
    • 2007
  • This paper presents active vibration control using a hybrid mount which consists of rubber element and the piezostack actuator. After identifying stiffness and damping properties of the rubber element and piezoelectric elements, a mechanical model of the hybrid mount is established. The mount model is then incorporated with the vibration system, and the governing equation of motion is obtained in a state space. A sliding mode controller and LQG controller are designed in order to actively attenuate the vibration of the system subjected to various frequencies and small magnitude excitations. Control responses such as acceleration and force transmission through the hybrid mount are evaluated by computer simulation.

Dynamic Modeling and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 동적 모델링 및 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.650-655
    • /
    • 2006
  • Dynamic modeling and active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is conducted. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure. Modal analysis is carried out to investigate the dynamic characteristics of the smart hull structure, and compared to the results of experimental investigation. Negative velocity feedback control algorithm is employed to investigate active damping of hull structure. It is observed that non-resonant vibration of hull structure is suppressed effectively by the MFC actuators.

  • PDF

A Study on the Signal Processing and Robust Control for a 3-DOF Active Vibration Isolator (3자유도 능동형 제진 시스템을 위한 신호처리 및 강인제어에 관한 연구)

  • Moon, Jun-Hee;Kim, Hwa-Soo;Pahk, Heui-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.153-156
    • /
    • 2006
  • The vibration isolation system is a system that attenuates the vibration transmitted from surroundings by using external energy supply like electricity and feedback and/or feedforward functions. Such a system needs stiff structure to make precise positioning without ripple within a certain bandwidth. So, a horizontal and rotary arrangement of the actuation module is suggested by using lever linkage. Modeling and kinematic formulation are completed and system identification is accomplished to tune the design variables accurately. The vibration isolation control is performed by mu-synthesis with the uncertainties in design variables. Low frequency signal enhancement circuit and saturation proof integration algorithm are devised to use seismic sensors for displacement control. This overall system shows good disturbance rejection performance.

  • PDF

Dynamic Modeling and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 동적 모델링 및 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.840-847
    • /
    • 2006
  • Dynamic modelingand active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuators are conducted. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure. Modal analysis is carried out to investigate the dynamic characteristics of the smart hull structure, and compared to the results of experimental investigation. Negative velocity feedback control algorithm is employed to investigate active damping of hull structure. It is observed that non-resonant vibration of hull structure is suppressed effectively by the MFC actuators.

Active Noise Control of 3D Enclosure System using FXLMS Algorithm (FXLMS 알고리즘을 이용한 3 차원 인클로저 시스템의 능동소음제어)

  • Oh, Jae-Eung;Yang, In-Hyung;Yoon, Ji-Hyun;Jung, Jae-Eun;Lee, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.240-241
    • /
    • 2009
  • The method of the reduction of the duct noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the Least-Mean-Square (LMS) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, When the Filtered-X LMS (FXLMS) algorithm is applied to an ANC system.

  • PDF

H2 Design for Active Vibration Control of a Cantilever Beam

  • Park, Sooyoung;Joonhong Jung;Park, Kiheon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.59.6-59
    • /
    • 2002
  • $\textbullet$ An experiment for the active vibration control of a cantilever beam is performed. $\textbullet$ An active damping system consisting of a laser sensor and an electromagnetic actuator. $\textbullet$ The design procedure and the performance analysis of an H2 controller for non-collocated systems. $\textbullet$ Simulations and experiments are performed to verify the performances of the controller. $\textbullet$ The optimal H2 controller is designed based on a reduced order model. $\textbullet$The Sensitivity function is introduced to analyze the Spillover phenomenon. $\textbullet$ Active vibration control, Cantilever beam, H2 controller, spillover, Non-collocated system.

  • PDF

Simulation of Active Noise Control on Harmonic Sound (복수조화음에 대한 능동소음제어 시뮬레이션)

  • Kwon, O-Cheol;Lee, Gyeong-Tae;Lee, Hae-Jin;Yang, In-Hyung;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.737-742
    • /
    • 2007
  • The method of the reducing duct noise can be classified by passive and active control techniques. However, passive control has a limited effect of noise reduction at low frequencies (below 500Hz) and is limited by the space. On the other hand, active control can overcome these passive control limitations. The active control technique mostly uses the Least-Mean-Square (LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time particularly when the Filtered-X LMS (FXLMS) algorithm is applied to an active noise control (ANC) system. However, the convergence performance of the LMS algorithm decreases slightly so it may delay the convergence time when the FXLMS algorithm is applied to the active control of duct noise. Thus the Co-FXLMS algorithm was developed to improve the control performance in order to solve this problem. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Co-FXLMS algorithm is presented in comparison with the FXLMS algorithm. Simulation results show that active noise control using Co-FXLMS is effective in reducing duct noise.

  • PDF

Active Optimal Control Techniques for Suppressing Dynamic Load in Vibration (진동에서 생기는 동적 하중을 줄이기 위한 능동 최적 제어)

  • 김주형;김상섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.749-757
    • /
    • 2002
  • Excessive vibration in flexible structures is a problem encountered in many different fields, causing fatigue of structural components. Passive techniques, though sometimes limited in their capabilities, have been used in the past to attenuate vibrations. Recently active techniques have been developed to enhance vibration control performance beyond that provided by their passive counterparts. Most often, the focus of active control methods has been to suppress structure displacements. In cases where vibration results in structure failures, displacement suppression may not be the best choice of control approaches (it can, in fact, increase dynamic loads which would be even more harmful to supports) . This paper presents two optimal control methods for attenuating steady state vibrations in flexible structures. One method minimizes shaft displacements while another minimizes dynamic reaction forces. The two methods are applied to a model of a typical flexible structure system and their results are compared. It is found that displacement minimization can increase loads, while load minimization decreases loads.

Vibration control of a time-varying modal-parameter footbridge: study of semi-active implementable strategies

  • Soria, Jose M.;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.525-537
    • /
    • 2017
  • This paper explores different vibration control strategies for the cancellation of human-induced vibration on a structure with time-varying modal parameters. The main motivation of this study is a lively urban stress-ribbon footbridge (Pedro $G\acute{o}mez$ Bosque, Valladolid, Spain) that, after a whole-year monitoring, several natural frequencies within the band of interest (normal paring frequency range) have been tracked. The most perceptible vibration mode of the structure at approximately 1.8 Hz changes up to 20%. In order to find a solution for this real case, this paper takes the annual modal parameter estimates (approx. 14000 estimations) of this mode and designs three control strategies: a) a tuned mass damper (TMD) tuned to the most-repeated modal properties of the aforementioned mode, b) two semi-active TMD strategies, one with an on-off control law for the TMD damping, and other with frequency and damping tuned by updating the damper force. All strategies have been carefully compared considering two structure models: a) only the aforementioned mode and b) all the other tracked modes. The results have been compared considering human-induced vibrations and have helped the authors on making a decision of the most advisable strategy to be practically implemented.