• Title/Summary/Keyword: vibration Test

Search Result 3,763, Processing Time 0.027 seconds

The countermeasure for the Vibration Problem of Turbo Chiller (300RT) (300RT급 터보냉동기 진동원인 분석 및 해결방안)

  • 김관영;홍제민;배종국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.184-188
    • /
    • 2001
  • Severe vibration was detected during test operation in motor frame of the Turbo Chiller (300RT). To identify the vibration problem, vibration measurement and modal test were carried out. From the test results, it is concluded that the severe vibration occurred due to the resonance between the motor frame horizontal mode and the motor excitation frequency. Therefore the horizontal mode of the frame could be controlled by the sensitivity analysis results for the length of the supporting plate.

  • PDF

Static load test of the bogie and vibration performance test, dynamic characteristics analysis of the bulk cement car (벌크시멘트화차의 대차 하중시험과 진동성능시험 및 동특성 해석 연구)

  • 홍재성;함영삼;백영남
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.186-193
    • /
    • 2003
  • The object of this study is to ensure the stability of bulk cement cars conducting vibration performance test, dynamic characteristic analysis and static load test of bogie frame. In case of static load test, bogie static load test facility was used. In case of dynamic characteristic analysis, Vampire Software was used. In case of vibration performance test, real bulk cement cars were used in kyeung-bu line. In the results of static load test of bogie frame for bulk cement car, all structures satisfied allowable stress criteria of materials. The vibration performance test and dynamic characteristic analysis results satisfied allowable standards.

Flow-Induced Vibration Signal Analysis of the FIV Test Loop (FIV 시험루프의 유동기인 진동 신호분석)

  • Lee, Kang-Hee;Kang, Heung-Soek;Yoon, Kyung-Ho;Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.601-606
    • /
    • 2004
  • Vibration spectrums of the test loop according to flow conditions were analyzed in order to identify the sources of vibration at peak frequencies. While a flow condition of the sweep test was changed by varying pump rotational speed from 450 rpm to 1500 rpm by the step 150 rpm, midspan acceleration of the test section in width-direction and dynamic pressure perturbation in the test section were measured. Other sources of vibration due to the flow structure interactions, such as acoustic resonance, blade pulsing frequency and bellows wrinkles, were investigated. Pressure perturbation in the section and acoustic resonance due to branch pipe give major effects to the vibration of the test section in high frequency range of 1.5 kHz to 2.8 kHz.

  • PDF

Vibration Fixture design for small satellite launch vehicle environment test (인공위성발사체 상단부 진동환경시험을 위한 치구설계)

  • Jeong, Ho-Kyeong;Seo, Sang-Hyun;Park, Soon-Hong;Jang, Young-Soon;Yi, Yeoung-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.258-262
    • /
    • 2007
  • Satellite launch vehicle is exposed to some dynamic environment during its flight. Particularly, the safety of launch vehicle structure is surely verified under vibration environment in low frequency range. Sine sweep test is generally performed to describe this low frequency vibration environment. Dynamic property of vibration fixture is considered to get the correct property of target object. This vibration fixture should really be an extension of the armature in the form of a very rigid structure that can transfer the required force at the required frequency. An optimum fixture would have its lower natural frequency about 50% higher than the highest required forcing frequency in order to avoid fixture resonances during the test. In this study, the vibration mode analysis considering the mass of target object to design the vibration fixture. And the modal test of vibration fixture is performed to conform the design.

  • PDF

Role of Distribution Function in Vibration Related Error of Strapdown INS in Random Vibration Test

  • Abdoli, A.;Taghavi, S.H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.302-308
    • /
    • 2014
  • In this paper, a detailed investigation of the random vibration test is presented for strapdown inertial navigation systems (INS). The effect of the random vibration test has been studied from the point of view of navigation performance. The role of distribution functions and RMS value is represented to determine a feasible method to reject or reduce vibration related error in position and velocity estimation in inertial navigation. According to a survey conducted by the authors, this is the first time that the effect of the distribution function in vibration related error has been investigated in random vibration testing of INS. Recorded data of navigation grade INS is used in offline static navigation to examine the effect of different characteristics of random vibration tests on navigation error.

Generation of the Input Profile for Fatigue Vibration Testing in MAST System (자동차부품(시트,도어) 6축 진동 재현을 위한 가진 프로파일 생성 기법)

  • Kim, Chan-Jung;Beak, Gyoung-Won;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.413-418
    • /
    • 2005
  • Vibration test using the MAST(Multi Axial Simulation Table) is more reliable test than conventional testing process focused on one directional vibration test. The former test could be possible with a advanced control algorithm and hardware supports so that most of the operation is automatically conducted by MAST system itself except the input information that is derived from the measured data. That means the reliability of the vibration test is highly depended on the input profile than any other cases before. In this paper, the optimal algorithm based on energy method is introduced so that the best combination of candidated input PSD data could be constructed. The optimal algorithm renders time information so that the vibration fatigue test is completely possible for any measured signals one wants. The real road test is conducted in short intervals containing some rough roads and the candidated input PSD is obtained from the extra road in proving ground. The testing is targeted for the electronically operated door and seat.

  • PDF

Study of Vibration Fatigue Test for Urea Tank of Diesel Vehicle Considering Vibration Characteristics (디젤차량 요소수탱크의 진동 특성을 고려한 진동내구시험법 연구)

  • Yoon, Ji Soo
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.213-219
    • /
    • 2018
  • Purpose: Satisfying the environmental regulations, the automobile manufacturer should install urea tank, which is a key component of the urea system. However, due to the limitations of existing layouts, it may be mounted which is disadvantageous to vibration and shock resulting in durability robust. analyze the factors affecting the durability life of urea tank and the vibration characteristics through RLDA. In this study, clarify the limit of the current practice test method of urea tank and analyze the possibility of the new vibration test method in the system unit reflecting the characteristics of actual use condition. Methods: Analyzing the factors affecting the durability life of urea tank and the vibration characteristics through PSD & FDS of RLDA that actual vehicle driving data on durability test road. Results: The limit of the uniform width/single frequency test method of urea tank is clarifed and the positive prospects of the new test method are discovered. Conclusion: The vibration durability test with PSD method in system unit effectively reflects the magnitude and frequency characteristics of field vibration.

Study on the Effects of the Mounting Direction of Vertically-launched Missiles in Vibration Tests (수직발사 유도탄의 진동시험에서 유도탄 장착방향의 영향에 대한 연구)

  • Lee, Hojun;Kim, Ki-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.218-225
    • /
    • 2013
  • Vertically-launched missiles are supported as erected vertically in the vertical launching system of warship, and they should be mounted in the same way when vibration-tested. However, mounting missiles vertically makes a fixture, which is a supporting structure, bulky and heavy so requiring a high-performance exciter. Mounting missiles as laid down horizontally in a vibration test is economical regarding fixture manufacturing and exciter performance, but it makes test results incorrect because the different mounting direction has effects on the test results. A bending moment due to missiles' weight happens to missiles, and resilient mounts, which support missiles in the vertical launch system, deflect differently from the real situation because of the static deflection of these mounts due to missiles' weight. If the resilient mounts supporting missiles have nonlinear force-deflection characteristics, vibration test results become more different from the true results. This paper proposes to support missiles with an additional resilient mount such as a bunge code in order to solve those problems coming from mounting vertically-launched missiles as laid down horizontally in vibration tests. The proposed approach enables to obtain the same test results as in their actual mounting condition even though vertically-launched missiles are mounted in a different direction.

Development and Application of New Evaluation System for Ride Comfort and Vibration on Railway Vehicles

  • Yoo Wan-Suk;Lee Chang-Hwan;Jeong Weui-Bong;Kim Sang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1469-1477
    • /
    • 2005
  • Vibrations related to ride comfort should be considered at the beginning of design stage. In general, ride comfort of human is mainly affected by vibration transmitted from the floor and seat. Also, vibration level is very important regarding with running safety on freight wagon. To ensure ride comfort for passenger coach and vibration level for freight wagon, tests had been repeated by different test procedures with several equipments. With different measuring and evaluations for these results, it took much time to evaluate test results. In this paper, a new evaluation procedure was developed combining several software for ride comfort and vibration level test on railway vehicles. In addition, this developed system is capable of ride comfort test and vibration test by a single integrated system that is capable of immediate reporting the test result. With this developed system, the comfort in a passenger coach and the vibration in a freight car were evaluated. And the simulation results from the proposed system are verified by a field test.

Vibration Control of Tower Structure under Wind Load (풍하중에 의한 타원형 구조물의 진동 제어)

  • Hwang Jae-Seung;Kim Yun-Seok;Joo Seok-Jun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.427-430
    • /
    • 2002
  • The present parer outlines the system identification and vibration control performance of air traffic control tower of Yangyang international airport with tuned mass damper(TMD). From the free vibration test, natural frequency, damping ratio and mode shape of tower are obtained and these values are compared with the values from numerical analysis. In the vibration control test to evaluate the vibration control performance, equivalent damping ratio increased by tuned mass damper are obtained in case the TMD is operated as passive mode. Damping ratio of tower evaluated from free vibration test is about $1.0{\%}$. It is very low value than damping ratio recommended in general code. Damping ratio of passive mode is about $5{\%}$. These equivalent damping ratio increased by TMD is enough to enhance the serviceability of tower structure under wind load.

  • PDF