• Title/Summary/Keyword: vibration Responses

Search Result 1,459, Processing Time 0.039 seconds

Dynamic Responses of Korean-Seated Subjects to Vertical Vibration (한국인의 앉은 자세에 대한 수직 진동의 응답 특성)

  • 정완섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.33-44
    • /
    • 2003
  • This paper introduces attempts to obtain the'representative'characteristics of the apparent mass and mechanical impedance of seated Korean subjects under vertical vibration. Individual responses of the apparent mass and driving-point mechanical impedance obtained from forty-one Korean subjects are illustrated. Four kinds of vibration levels and three different sitting postures are selected to collect the responses of each subject. Those individual responses are used to estimate the 'mean' mechanical impedance, which may be expected to be a representative model to Korean subjects. Several interesting features of the estimated mechanical impedance are suggested and compared to those of ISO 5982.

  • PDF

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (동적응답을 최소화하는 비구속형 제진보의 제진부위 최적설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.656-661
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beams is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. The loss factors of partially covered unconstrained beam are calculated by the modal strain energy method. Vibration responses are calculated by using the modal superposition method, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in minimizing vibration responses with unconstrained damping layer treatment.

  • PDF

Experimental Investigation of the Characteristics of Mechanical Impedance of Korean- Seated Subjects (한국인의 앉은 자세에 대한 Mechanical Impedance의 실험적 연구)

  • 정완섭;김영태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.246-254
    • /
    • 2003
  • This paper introduces attempts to obtain the 'representative' characteristics of the mechanical impedance of seated Korean subjects under vertical vibration. Individual responses of driving-point mechanical impedance obtained from forty-one Korean subjects are illustrated. Four kinds of vibration levels and three different sitting postures are selected to collect the responses of each subject. Those individual responses are used to estimate the 'mean' mechanical impedance, which may be expected to be a representative model to Korean subjects. Several interesting features of the estimated mechanical impedance are suggested and compared to those of ISO/DIS 5982.

  • PDF

Experimental Investigation of the Response Characteristics of Korean-seated Subjects under Vertical Vibration : (I) Apparent Mass (한국인 앉은 자세에 대한 수직 진동 응답특성의 실험적 연구: (I) 겉보기 질량(Apparent Mass))

  • 정완섭;김영태;권휴상;홍동표
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.645-650
    • /
    • 2003
  • This paper introduces attempts to obtain the 'representative'characteristics of the apparent mass (or dynamic mass) of seated Korean subjects under vertical vibration. Individual responses of driving-oint apparent masses obtained from forty one Korean subjects are illustrated. Four kinds of vibration levels and three different sitting postures are selected to collect the characteristic responses of each subject. Those individual responses are used to estimate the 'mean'apparent mass, which may be expected to be a representative model to Korean subjects. Several interesting features of the estimated apparent mass are suggested and compared to those of ISO 5982.

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (진동응답을 최소화하는 비구속형 제진보의 제진 부위 최적설계)

  • Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.829-835
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beam is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. Vibration responses are calculated by using the modal superposition principle, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in suppressing nitration responses by means of unconstrained damping layer treatment.

Experimental Study for Prediction of Ground Vibration Responses by the Low-Vibration Pile Driving Methods (저진동 파일시공법에 따른 지반진동 응답 예측을 위한 실험적 연구)

  • Park, Sun-Joon;Kang, Sung-Hoo;Jung, Seug-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.201-207
    • /
    • 2010
  • In this study, the SIP (Soil-cement Injected precast Pile) method among the Low-vibration & Low-noise pile driving methods was decided into study compensation. Ground vibrations by the SIP methods step by step divide and were analyzed. Quantitative response values and ground vibration equations with reliability were presented from findings of this study. Also, vibration responses that are occurred by the SIP method of construction were compared as quantitative with vibration responses by general method of construction that are presented in existent study. Ground vibration values by the SIP method correspond to level of 17 ~ 57% of values that are assumed by the Attewell & Famer's equation, respectively, and these result compares in reliability 50% and separated distance 10 ~ 50 m. Also, those values were analyzed that correspond to level of 14 ~ 96% of ground vibration values by the Prof. Park's equation, respectively. Construction limit extents, separation distances from vibration occurs position, were presented that can satisfy domestic criteria for vibration control for the SIP methods. Those presented in this paper were divided newly according to reliability.

  • PDF

Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses

  • Ni, Y.Q.;Wang, Y.W.;Xia, Y.X.
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.447-468
    • /
    • 2015
  • Modal identification of civil engineering structures based on ambient vibration measurement has been widely investigated in the past decades, and a variety of output-only operational modal identification methods have been proposed. However, vibration modes, even fundamental low-order modes, are not always identifiable for large-scale structures under ambient vibration excitation. The identifiability of vibration modes, deficiency in modal identification, and criteria to evaluate robustness of the identified modes when applying output-only modal identification techniques to ambient vibration responses were scarcely studied. In this study, the mode identifiability of the cable-stayed Ting Kau Bridge using ambient vibration measurements and the influence of the excitation intensity on the deficiency and robustness in modal identification are investigated with long-term monitoring data of acceleration responses acquired from the bridge under different excitation conditions. It is observed that a few low-order modes, including the second global mode, are not identifiable by common output-only modal identification algorithms under normal ambient excitations due to traffic and monsoon. The deficient modes can be activated and identified only when the excitation intensity attains a certain level (e.g., during strong typhoons). The reason why a few low-order modes fail to be reliably identified under weak ambient vibration excitations and the relation between the mode identifiability and the excitation intensity are addressed through comparing the frequency-domain responses under normal ambient vibration excitations and under typhoon excitations and analyzing the wind speeds corresponding to different response data samples used in modal identification. The threshold value of wind speed (generalized excitation intensity) that makes the deficient modes identifiable is determined.

Impact of uncertain natural vibration period on quantile of seismic demand

  • Hong, H.P.;Wang, S.S.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.357-372
    • /
    • 2008
  • This study investigates effect of uncertainty in natural vibration period on the seismic demand. It is shown that since this uncertainty affects the acceleration and displacement responses differently, two ratios, one relating peak acceleration responses and the other relating the peak displacement responses, are not equal and both must be employed in evaluating and defining the critical seismic demand. The evaluation of the ratios is carried out using more than 200 strong ground motion records. The results suggest that the uncertainty in the natural vibration period impacts significantly the statistics of the ratios relating the peak responses. By using the statistics of the ratios, a procedure and sets of empirical equations are developed for estimating the probability consistent seismic demand for both linear and nonlinear systems.

Effect of Lift-offset Rotor Hub Vibratory Load Components on Airframe Vibration Responses of High-Speed Compound Unmanned Rotorcrafts (고속비행 복합형 무인 회전익기의 Lift-offset 로터 허브 진동 하중 성분과 기체 진동 응답의 상관 관계의 연구)

  • Kim, Ji-Su;Hong, Sung-Boo;Kwon, Young-Min;Park, Jae-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.255-263
    • /
    • 2021
  • This paper investigates numerically the effect of rotor hub vibratory load components on the airframe vibration responses of high-speed compound unmanned rotorcraft (HCUR) using a lift-offset coaxial rotor, wings, and two propellers. The rotor hub vibratory loads are predicted using a rotorcraft comprehensive analysis code, CAMRAD II, and the airframe vibration responses are calculated by a finite element analysis software, MSC.NASTRAN. It is shown that the vibratory hub pitch moment of a lift-offset coaxial rotor is the most dominant component for both the longitudinal and vertical vibration responses at four specified locations of the airframe.

Experimental Investigation of the Response Characteristics of Korean -seated Subjects under Vertical Vibration: (II) Mechanical Impedances (한국인 앉은 자세에 대한 수직 진동 -응답특성의 실험적 연구 : (II) Mechanical Impedances)

  • 정완섭;김영태;권휴상;홍동표
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.713-719
    • /
    • 2003
  • This paper introduces attempts to obtain the ‘representative’ characteristics of the mechanical impedance of seated Korean subjects under vertical vibration. Individual responses of driving-point mechanical impedance obtained from forty one Korean subjects are illustrated. Four kinds of vibration levels and three different sitting postures are selected to collect the responses of each subject. Those individual responses are used to estimate the ‘mean’ mechanical impedance, which may be expected to be a representative model to Korean subjects. Several interesting features of the estimated mechanical impedance are suggested and compared to those of ISO/DIS 5982.