• Title/Summary/Keyword: vibrating displacement

Search Result 54, Processing Time 0.027 seconds

Enhancement of the Technique for Analyzing a Pile Driven by Vibro Hammer (진동해머에 의해 시공되는 말뚝의 해석기법 제고)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3596-3601
    • /
    • 2015
  • Enhancement of the existing program for analyzing a pile driven by vibro hammer was tried. Damping effect of dynamic soil resistance and clutch friction were added to the existing governing equation which constitute vibrating system of vibro hammer-pile-soil. Parameters of the modified Ramberg-Osgood model which simulates dynamic load transfer curves for the developed program were recomputed. Comparing the results of the modified program with those of the field tests, pile displacement with time and load transfer behavior were more similar to those of the field test. The penetration rates obtained from the modified program were more close to those of the field test rather than those of the commertical program.

A Study on the Improvement of Cutting Precision by the Ultrasonic Vibration Cutting (초음파 진동 절삭에 의한 가공정도 향상에 관한 연구)

  • Kang, Jong-Pyo;Kim, Byong-Hwa;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.69-77
    • /
    • 1991
  • The ultimate target of machining process is to get both precision and productivity simultaneously. To obtain these effects, many kinds of machining methods have been considered and various research effort has been made for a long time. Ultrasonic vibration cutting method is one of these methods. When the ultrasonic vibration is applied on the workpiece or the tool, the cutting tool makes periodical contact with workpiece due to vibration. The cutting is performed by vibrating impact force while the cutting tool contacts the workpiece, and it makes the displacement of both the tool and workpiece minimum in three force component (principal, axial, radial force) direction during the cutting process. So the cutting precision is better than conventional cutting method. The main results that obtained by the expriments of ultrasonic vibration cutting are as follows; 1. The value of roundness is about 1.4 ~ 2.5 [${\mu}m$] and this value is three or four times less than that of conventional cutting. 2. The value of surface roughness is about 1.2~2.2 [${\mu}m$] and this value is the two or three times less than that of conventional cutting.

  • PDF

A Useful Technique for Measuring the 3-dimensional Positioning of a Rotating Object (회전체의 효과적인 3차원 위치오차 측정방법)

  • Lee, Eung-Seok;Wi, Hyeon-Gon;Jeong, Ju-No
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.918-924
    • /
    • 1997
  • A method for measuring the accuracy of rotating objects was studied. Rotating axis errors are significant; such as the spindle error of a manufacturing machine which results in the surface roughness of machined work pieces. Three capacitance type displacement sensors were used to measure the rotating master ball position. The sensors were mounted to the three orthogonal points on the spindle axis. The measurement data were analyzed and shown for rotating spindle accuracy, not only for average roundness error but also for spindle volumetric positional error during the revolutions. This method is simple and economical for industrial field use with regular inspection of rotating machines using portable equipment. Measuring and analyzing time using this method takes only a couple of hours. This method can also measure microscopic amplitude and 3-dimensional direction of vibrating objects.

Study of a vibrating propulsion system for marine vessels: Evaluation of the efficiency for a boat 13 m long

  • Muscia, Roberto
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.201-211
    • /
    • 2018
  • This paper illustrates recent advancements relative to a non-conventional propulsion system for boats and is based on two previous papers of the author presented at a conference (see Muscia, 2015a,b). The system does not consider propellers and utilizes the vibration generated by two or more pairs of counter rotating masses. The resultant of the centrifugal forces applies an alternate thrust to the hull that oscillates forward and backward along the longitudinal axis of the boat. The different hydrodynamic drag forces that oppose to the oscillation produce a prevalently forward motion of the vessel. The vibration that causes the motion can be suitably defined to maximize the forward displacement and the efficiency propulsion of the system. This result is obtained by using elliptical gears to rotate the counter rotating masses. The computation of the propulsion efficiency is based on a suitable physical mathematical model. Correlations between numerical experiments on models and possible full scale application are discussed. Some remarks in relation to practical applications and critical issues of the propulsive solution are illustrated. The results have been obtained with reference to a CAD model of a real boat already manufactured whose length is approximately equal to 13 m.

Chaotic phenomena in the organic solar cell under the impact of small particles

  • Jing, Pan;Zhe, Jia;Guanghua, Zhang
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.15-31
    • /
    • 2023
  • Organic solar cells utilized natural polymers to convert solar energy to electricity. The demands for green energy production and less disposal of toxic materials make them one of the interesting candidates for replacing conventional solar cells. However, the different aspects of their properties including mechanical strength and stability are not well recognized. Therefore, in the present study, we aim to explore the chaotic responses of these organic solar cells. In doing so, a specific type of organic solar cell constructed from layers of material with different thicknesses is considered to obtain vibrational and chaotic responses under different boundaries and initial conditions. A square plate structure is examined with first-order shear deformation theory to acquire the displacement field in the laminated structure. The bounding between different layers is considered to be perfect with no sliding and separation. On the other hand, nonlocal elasticity theory is engaged in incorporating the structural effects of the organic material into calculations. Hamilton's principle is adopted to obtain governing equations with regard to boundary conditions and mechanical loadings. The extracted equations of motion were solved using the perturbation method and differential quadrature approach. The results demonstrated the significant effect of relative glass layer thickness on the chaotic behavior of the structure with higher relative thickness leading to less chaotic responses. Moreover, a comprehensive parameter study is presented to examine the effects of nonlocality and relative thicknesses on the natural frequency of square organic solar cell structure.

Service ability design of vibrating chiral SWCNTs: Validation and parametric study

  • Muzamal Hussain;Mohamed R. Ali;Abdelhakim Benslimane;Humaira Sharif;Mohamed A. Khadimallah;Muhammad Nawaz Naeem;Imene Harbaoui;Sofiene Helaili;Aqib Majeed;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.393-398
    • /
    • 2023
  • This paper provides the free vibrations of chiral carbon nanotubes. The governing equations of Flügge theory is considered for vibration frequencies of chiral single walled carbon nanotubes. The solution of frequency equation is obtained from a novel model for better representation of stubby and short vibration characteristics of chiral tubes with clamped-clamped and clamped-simply supported end conditions. For the harmonic response of this tube, the model displacement function is adopted. The variational approach Rayleigh-Ritz method with kinetic and strain energies are used. The Lagragian function is differentiated with respect to unknown functions. The frequency equation is written in compact form to solve with MATLAB software. The frequencies of chiral SWCNTs for first ten aspect ratios as small level are investigated. The results shown as for decreasing the aspect rations, the frequencies are increases. The presented results of this model are verified with experimental and numerical results, which found as an excellent agreement.

Development of the Inductive Proximity Sensor Module for Detection of Non-contact Vibration (비접촉 진동 검출을 위한 유도성 근접센서모듈 개발)

  • Nam, Si-Byung;Yun, Gun-Jin;Lim, Su-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.61-71
    • /
    • 2011
  • To measure the fatigue of metallic objects at high speed vibration while non-contact precision displacement measurement on how to have a lot of research conducted. Noncontact high-speed vibration detection sensor of the eddy current sensors and laser sensors are used, but it is very expensive. Recently, High-speed vibrations detection using an inexpensive inductive sensor to have been studied, but is still a beginner. In this paper, a new design of an inexpensive inductive proximity sensor has been suggested in order to measure high frequency dynamic displacements of metallic specimens in a noncontact manner. Detection of the existing inductive sensors, detection, integral, and amplified through a process to detect the displacement noise due to weak nature of analog circuits and integral factor in the process of displacement detection is slow. The proposed method could be less affected by noise, the analog receive and high-speed signal processing is a new way, because AD converter (Analog to Digital converter) without using the vibration frequency signals directly into digital signals are converted. In order to evaluate the sensing performance, The proposed sensor module using non-contact vibration signals were detected while shaker vibration frequencies from 30Hz to 1,100 Hz at intervals of vibrating metallic specimens. Experimental results, Vibration frequency detection range of the metallic specimins within close proximity to contactless 5mm could be measured from DC to 1,100Hz and vibration amplitude of the resolution was $20{\mu}m$. Therefore, the proposed non-contact inductive sensor module for precision vibration detection sensor is estimated to have sufficient performance.

Development of a Seismic Test Method for Fire Protecting Components by Equivalent Linear Analysis Theory (등가선형해석이론에 의한 소방설비 구성품의 Lab scale 내진성능평가기법 개발)

  • Kwark, Ji-Hyun;Yoon, Jong-Ku
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.46-51
    • /
    • 2013
  • In this study a lab scale seismic test method which is able to evaluate seismic resistant performance of the fire protecting components in case of earthquake was developed. This seismic test consists of equivalent accelerating and temporary accelerating. The former is to search for resonance frequency and the latter is to simulate vibrating by earthquake with intensive magnitude. The frequency and displacement accelerated to the components was decided by maximum acceleration of gravity, and whether or not they could maintain function was tried to be confirmed. This test method is expected as an effective one for evaluating seismic resistant performance for the fire protecting components.

Elastic Behavior of Contact Lense(I) : Effect of Vibration (콘택트 렌즈의 탄성에 관한 연구(I) : 진동에 의한 영향)

  • Kim, Dase-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.1-16
    • /
    • 1999
  • Differential equations and its numerical solution program using Turbo-C were formulated to describe the radical distribution and average displacement amplitude of vibrating dehydrated contact lens(HEMA) driven by sinusoidal or rectangular pressure. The natural resonant frequency of the lens diaphram(thickness 0.08mm, diameter 14mm, curvature radius 8mm) was measured to be 5730 Hz from the extrapolation of frequency vs addedmass to the diaphram curve. The Young's modulus of the lens was measured to be $4{\times}10^9$ Pa with altering the original shape. The effect of parameters such as thickness, effective radius, damping coeff., amplitude of driving pressure on the vibration characteristics was illustrated by the computer simulation of the derived program. When the frequency of driving pressure coincides with the integral multiple of fundamental resonance frequency of the lens the wave pattern changes from arc to bell-shape along the radial position of the diaphram. If this happens to the contact lens on the cornea in vivo, it might create the feel of pull of the lens due to the increased rise of central part of the lens.

  • PDF

Study on Vibrated Cutting Blade with Hinge Mechanism (힌지구조 진동절단장치에 관한 연구)

  • Kang, Dong-Bae;Ahn, Joong-Hwan;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.443-448
    • /
    • 2010
  • Rapid advance in information technology requires high performance devices with compact size. Integrated multi-layer electronic element with different functions enables those compact devices to possess various performances and powerful capabilities. In mass production, the multi-layer electronic element is manufactured as a bulk type with a large number of parts for productivity. However, this may cause the electronic part to be damaged in the cutting process of the bulk elements to separate into each part. Therefore the cutting performance of multi-layer element bulk is playing an important role in the view of production efficiency. This study focuses on the cutting characteristics of multi-layer electronic elements. In order to increase the efficiency, the vibration cutting method was applied to the blade cutting machine. Flexure hinge structure, which is an physical amplifier of increasing displacement, was attached to the vibration cutting device for machining efficiency. The behaviors of flexure hinge were modeled with Lagrange equation and simulated with finite element method (FEM). Performance of hinge structure was verified by experimental modal analysis (EMA) for hinge structure to be tuned to the specific mode of vibrations. Cutting experiments of multi-layer elements were conducted with the proposed vibrating cutting module, and the characteristics was analyzed.