• Title/Summary/Keyword: vibrating .sample

Search Result 206, Processing Time 0.028 seconds

M-Zn (M = Sb, V, and Nb) Substituted Strontium Hexaferrites with Enhanced Saturation Magnetization for Permanent Magnet Applications

  • Sapoletova, Nina;Kushnir, Sergey;Ahn, Kyunghan;An, Sung Yong;Choi, Moonhee;Kim, Jae Yeong;Choi, Changhak;Wi, Sungkwon
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.315-321
    • /
    • 2016
  • M-Zn (M = Sb, V, Nb) substituted M-type strontium hexaferrites were prepared by a ceramic method. The phase composition, morphology and magnetic properties were studied by x-ray diffractometry, scanning electron microscopy and vibrating sample magnetometry. Saturation magnetization increases with a substitution up to 75.0 emu/g (2.5 % higher compared to unsubstituted hexaferrite) and then decreases with a further substitution. A coercive field of substituted hexaferrite powders with highest saturation magnetization is more than 3 kOe. Substituted strontium hexaferrite powders prepared in this work are a rare example of high $M_S$ compositions without doping rare-earth elements and would be a promising candidate for a permanent magnet application.

Experimental investigation of organic fouling mitigation in membrane filtration and removal by magnetic iron oxide particles

  • Jung, Jaehyun;Sibag, Mark;Shind, Bora;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.223-229
    • /
    • 2020
  • Here magnetic iron oxide particles (MIOPs) were synthesized under atmospheric air and which size was controlled by regulating the flow rate of alkali addition and used for efficient removal of bovine serum albumin (BSA) from water. The MIOPs were characterized using field-emission scanning electron microscopy (FE-SEM), Fourier transformation-Infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). The results revealed a successful preparation of the MIOPs. The removal efficiency for BSA using MIOPs was found to be about 100% at lower concentrations (≥ 10 mg/L). The maximum adsorption of 64.7 mg/g for BSA was achieved as per the Langmuir adsorption model. In addition, microfiltration membrane for removal of BSA as model protein organic foulant is also studied. The effect of various MIOPs adsorbent sizes of 210, 680 and 1130 nm on the absorption capacity of BSA was investigated. Water permeability of the BSA integrated with the smallest size MIOPs membrane was increased by approximately 22% compared by the neat BSA membrane during dead-end filtration. Furthermore, the presence of small size MIOPs were also effective in increasing the permeate flux.

The Effect of $Bi_2$$O_3$Addition on the Microstructure and Magnetic Properties of YIG Prepared by RSP(Reaction Sintering Process) (반응소결공정으로 제조된 YIG의 미세구조 및 자기특성에 대한 $Bi_2$$O_3$첨가 영향)

  • 김태옥;장학진;윤석영
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.710-715
    • /
    • 2001
  • 반응소결공정(RSP : Reaction Sintering Process)을 이용하여 YF댸₃와 Fe₂O₃의 성분에 소결첨가재 Bi₂O₃를 첨가하여 YIG를 합성하였다. Bi₂O₃첨가량과 소결온도에 따른 YIG 소결체의 미세구조 및 자기적 특성변화에 대해 주사전자현미경, X-선 회절분석기 및 시료 진동형 자력계를 이용하여 조사하였다. 소량의 소결첨가재 Bi₂O₃첨가시 YIG 소결체의 격자상수는 12.387에서 12.420 Å으로 증가하였다. 이는 상대적으로 이온반경이 큰 Bi 이온이 12면체 Y 이온 자리로 치환되었기 때문인 것으로 여겨진다. Bi₂O₃를 1.0 wt% 첨가하였을 때 비교적 균질한 미세구조를 보였으며, 1350℃에서 소결한 YIG의 밀도가 이론밀도의 98% 이상의 치밀화를 보였다. Bi₂O₃가 0.0 wt%에서 1.5 wt%로 첨가량이 증가함에 따라 상온에서의 포화자화값(M/sub s/)은 조금씩 증가하는 경향을 보였으나 큰 변화는 없었다. 반응소결공정을 이용 YIG 소결시 소결첨가제 Bi₂O₃가 1.0 wt%이고, 소결온도 1350℃에서 비교적 우수한 소결특성과 자기특성을 가지는 YIG 소결체를 얻을 수 있었다.

  • PDF

Magnetization characteristics of melt-textured Y-Ba-Cu-O with BaCe$O_{3}$ addition (용융공정으로 제조한 Y-Ba-Cu-O/BaCe$O_{3}$ 초전도체의 자화특성)

  • Kim, Chan-Jung;Park, Hae-Ung;Kim, Gi-Baek;Hong, Gye-Won
    • Korean Journal of Materials Research
    • /
    • v.5 no.4
    • /
    • pp.433-444
    • /
    • 1995
  • BaCe$O_{3}$를 첨가하여 용융공정으로 제조한 단결정형 Y$Ba_{2}$$Cu_{3}$$O_{x}$(1-2-3) 초전도체의 온도에 대한 자화특성을 연구하였다. 고상반응법과 용융공정으로 0에서 30wt% BaCe$O_{3}$를 1-2-3 결정내에 미세 분산시켰다. 초전도체의 자화특성은 VSM(vibrating sample magnetometer)을 사용하여 77K, 60K, 40K와 20K, 2 Tesla 자장범위에서 측정하였다. BaCe$O_{3}$를 첨가하지 않은 겨우나 5wt% BaCe$O_{3}$를 첨가한 1-2-3 결정의 경우, 77K, 외부자장이 증가시 자화율 차이가 증가하는 비정상 자화특성이 관찰된다. 측정온도가 60K에서는 제2차 최대점이 나타나는 자장값이 고자장쪽으로 이동한다. 20K와 40K의 저온에서는 비정상자화특성이 2 T의 자장범위까지 관찰되지 않았다. 15wt%와 20wt% BaCe$O_{3}$첨가한 시편에서는 자장이 증가하면 자화율차이가 단순히 감소한다. Y-Ba-Cu-O의 flux pinning 기구를 BaCe$O_{3}$첨가에 의한 미세조직변화로 설명하였다.

  • PDF

Chemical Leaching of Non-Equilibrium Al(Fe-Co) Powder Produced by Rod Milling

  • Kim, Hyun-Goo
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.305-309
    • /
    • 2003
  • We report on the formation and chemical leaching of non-equilibrium $Al_{0.6}(Fe_{75}Co_{25})$ alloy produced by rod milling. X-ray diffractometry, transmission electron microscopy, differential scanning calorimetry, scanning electron microscopy, and vibrating sample magnetometry were used to characterize the as-milled and leached specimens. After 400 h, only the $Al_{0.4}Fe_{0.6}$ peak of the body-centered cubic type was present in the XRD pattern. The entire rod milling process could be divided into three different stages of milling: agglomeration, disintegration, and homogenization. The saturation magnetization, $M_s$ decreased with increased milling time, the $M_s$ of the powders before milling was about 113.8 emu/g, the $M_s$ after milling for 400 h was about 11.55 emu/g. Leaching of the Al in KOH of the Al at room temperature from the as-milled powders did not induce any significant change in the diffraction pattern. After the leached specimen had been annealed at $600^{\circ}C$ for 1 hour, the nanoscale crystalline phases were transformed into the bcc Fe, cubic Co, and $CoFe_2O_4$ phases. On cooling the specimen from 85$0^{\circ}C$, the degree of magnetization increased slightly, then increased sharply at approximately 364.8$^{\circ}C$, indicating that the bcc $Al_{0.4}Fe_{0.6}$ phase had been transformed to the Fe and Co phases.

Effect of Homogenization Treatment on Magnetic Properties of HDDR Treated Nd-Fe-Ga-Nb-B Alloy (모합금의 균질화처리가 HDDR 처리된 Nd-Fe-Ga-Nb-B 합금의 자기적 특성에 미치는 영향)

  • Yu, J.H.;Lee, S.H.;Kim, D.H.;Lee, D.W.;Kim, B.K.;Choi, M.H.;Kim, Y.D.
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.285-290
    • /
    • 2009
  • HDDR treated anisotropic Nd-Fe-B powders have been widely used, due to their excellent magnetic properties, especially for sheet motors and sunroof motors of hybrid and electric vehicles. Final microstructure and coercivity of such Nd-Fe-B powders depend on the state of starting mother alloys, so additional homogenization treatment is required for improving magnetic properties of them. In this study, a homogenization treatment was performed at $900\sim1140^{\circ}C$ in order to control the grain size and Nd-rich phase distribution, and at the same time to improve coercivity of the HDDR treated magnetic powders. FE-SEM was used for observing grain size of the HDDR treated powder and EPMA was employed to observe distribution of Nd-rich phase. Magnetic properties were analyzed with a vibrating sample magnetometer.

Magnetic Properties of Micron Sized Fe3O4 Crystals Synthesized by Hydrothermal Methods (수열합성을 이용하여 제작한 Fe3O4 결정입자의 자기적 특성)

  • Lee, Ki-Bum;Nam, Chunghee
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.481-486
    • /
    • 2019
  • Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 ㎛) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°-80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.

Functionalized magnetite / silica nanocomposite for oily wastewater treatment

  • Hakimabadi, Seyfollah Gilak;Ahmadpour, Ali;Mosavian, Mohammad T. Hamed;Bastami, Tahereh Rohani
    • Advances in environmental research
    • /
    • v.4 no.2
    • /
    • pp.69-81
    • /
    • 2015
  • A new magnetite-silica core/shell nanocomposite ($Fe_3O4@nSiO_2@mSiO_2$) was synthesized and functionalized with trimethylchlorosilane (TMCS). The prepared nanocomposite was used for the removal of diesel oil from aqueous media. The characterization of magnetite-silica nanocomposite was studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), surface area measurement, and vibrating sample magnetization (VSM). Results have shown that the desired structure was obtained and surface modification was successfully carried out. FTIR analysis has confirmed the presence of TMCS on the surface of magnetite silica nanocomposites. The low- angle XRD pattern of nanocomposites indicated the mesoscopic structure of silica shell. Furthermore, TEM results have shown the core/shell structure with porous silica shell. Adsorption kinetic studies indicated that the nanocomposite was able to remove 80% of the oil contaminant during 2 h and fit well with the pseudo-second order model. Equilibrium studies at room temperature showed that the experimental data fitted well with Freundlich isotherm. The magnetic property of nanocomposite facilitated the separation of solid phase from aqueous solution.

Preparation and Property of Water Based Manetic Fluid by Peptization Method (해교법에 의한 수상자성유체의 제조 및 특성에 관한 연구)

  • Oh, Jae-Hyun;Kim, Min-Seuk;Kim, Mahn;Kim, Seung-Wan
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.234-240
    • /
    • 1993
  • The water-based magnetic fluids were prepared with the synthesized ultrafine magnetite, dodecanoic acid as surfactant. Characteristics of synthesized ultrafine magnetite were investigated with X-ray Diffraction Pattern, Transmission Electron Microscope, Vibrating Sample Magnetometer and BET analysis. Dispersion characteristics of water-based magnetic fluids were investigated in relation to amounts of surfactant, pH and solid content.

  • PDF

The Effect of Boronizing on the Magnetization Behaviour of Low Carbon Microalloyed Steels

  • Calik, Adnan;Karakas, Mustafa Serdar;Ucar, Nazim;Aytar, Omer Baris
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.96-99
    • /
    • 2012
  • The change of saturation magnetization in boronized low carbon microalloyed steels was investigated as a function of boronizing time. Specimens were boronized in an electrical resistance furnace for times ranging from 3 to 9 h at 1123 K. The metallurgical and magnetic properties of the specimens were investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). A boride layer with saw-tooth morphology consisting of FeB and $Fe_2B$ was observed on the surface, its thickness ranged from 63 ${\mu}m$ to 140 ${\mu}m$ depending on the boronizing time. XRD confirmed the presence of $Fe_2B$ and FeB on the surface. The saturation magnetization decreased with increasing boronizing time. This decrease was attributed to the increased thickness of the FeB and $Fe_2B$ phases. Cracks were observed at the FeB/$Fe_2B$ interfaces of the samples. The number of interfacial cracks increased with increasing boronizing time.