• Title/Summary/Keyword: viability loss

Search Result 246, Processing Time 0.031 seconds

Stable Degradation of Benzoate by Klebsiella oxytoca C302 Immobilized in Alginate and Polyurethane

  • Kim, Jun-Ho;Jeong, Won-Hwa;T.B. Karegoudar;Kim, Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.347-351
    • /
    • 2002
  • Benzoate produced from the degradative pathways of various aromatic chemicals is generally recognized as a pollutant compound. However, various bacterial strains isolated as benzoate degraders have exhibited certain limits to their functions, including a loss of viability and degradability when cultivated in a broth medium for a longer time. Accordingly, immobilization techniques have been utilized to overcome such problems, and the current study examined the use of alginate and polyurethane for immobilizing Klebsiella oxytoca C302 to extend its viability and degradability of benzoate. The organism was well encapsulated by both matrices and the immobilized cells showed a high stability as regards their viability and degradability of 2 mM benzoate in a MM2 broth medium during cultivation for longer than 60 h in a semicontinuous batch system.

Flow Cytometric Analysis of Endothelial Cell Viability in Arterial Allograft (동종동맥판 혈관내피세포의 생육성 평가에 관한 연구)

  • 임창영;홍은경
    • Journal of Chest Surgery
    • /
    • v.30 no.6
    • /
    • pp.553-558
    • /
    • 1997
  • Arterial allografts have known advantages over prosthetic vascular conduit for treatment of heart valvular disease, congenital heart disease and aortic disease. Cell viability may play a role in determining the longterm outcome of allografts. Endothelial cell is one important part in determining the allograft viability. To evaluate the viability of endothelial cells using current allograft preservation technique, porcine heart valve leaflets and arterial wall were subjected to collagenase digestion. Single endothelial cell suspension was labeled with GSA-PITC(Griffonia simplicifolia agglutininfluorescein isothiocyan te), a vascular, endothelial cell specific marker. The cell suspension was washed and incubated with Pl(Propidium iodide), which does not bind with viable cells, Endothelial cell viability was evaluated by calculating the percentage of GSA-FITC(+) and Pl(-) group using flowcytometric analysis. Allografts were treated with $4^{\circ}C$ antibiotic solo!ion for 24 hours for sterilization. After this, half of allografts were stored in $4^{\circ}C$ RPMI 1640 with HEPES buffer culture medium with 10% fetal bovine serum for 1 to 14 days(Group I). Another half of allografts were cryopreserved with a currently used technique (Group II). During the procurement and sterilization of arterial allografts, 22.8% and 24.4% of endothelial cell viability declined, respectively. In Group I, 11.9% of endothelial cell viability declined further steadily during 14 days of storage. In Group II, 13.7% of endothelial cell viability declined. These results show that largest loss of endothelial cell viability occurs during the nitial process. After 14 days of arterial allograft storage under $4^{\circ}C$ nutrient medium or cryopreservation, about 40% of endothelial cell viability is maintained. There were no differences between the endothelial cell viability from aortic valve leaflet, pulmonic valve leaflets, aortic wall and pulmonic wall.

  • PDF

Antiapoptotic Role of Pyruvate in Vascular Endothelial Cells (혈관내피세포의 Apoptosis에 대한 Pyruvate의 억제효과)

  • 정세진
    • Journal of Nutrition and Health
    • /
    • v.32 no.3
    • /
    • pp.318-326
    • /
    • 1999
  • Apoptotic cell death, characterized by DNA fragmentation and morphological changes, has previously been shown to occur in vascular endothelial cells cultured with hydrogen peroxide. The present study examined the induction of apoptosis by hydrogen peroxide and whether pyruvate, a key glycolytic intermediate and $\alpha$-keto-monocarboxylate, can inhibit the apoptotic effects in bovine pulmonary artery endothelial cells(BPAECs). Culture with 500uM hydrogen peroxide resulted in 30% cell death and induced morphological changes and DNA fragmentation. Cell injury was inhibited by the treatment with pyruvate. Pyruvate(0.1-5.0mM), and cell viability increased in a dose-dependent manner. In the presence of pyruvate(10~20mM), the viability was improved to over 95%. In contrast, treatment with lactate, a reduced form of phyuvate, did not protect against cell death oxidative stress-induced loss of viability and apoptosis was examined with $\alpha$-cyano-3-hydroxycinnarmate(COHC) as a selective mitochondrial monocarboxylate transport blocker. Incubation with COHC(500uM) did not significantly affect cell viability in the presence of hydrogen peroxide. The cytoprotection by pyruvate(3mM)against hydrogen peroxide stress was abolished by COHC. This indicates that the cytoprotection by pyruvate against oxidative stress in endothelial cells is mediated, at least in part, by mitochondrial pyruvate uptake and hence endothelial enerygetics. However, cytosolic mechanisms related, at least in part, by mitochondrial pyruvate uptake and hence endothelial energetics. However, cytosolic mechanisms related to the glutathione system may also contribute. The results suggest that pyruvate has therapeutic potential in the treatment of oxidative stress-induced cytotoxicity associated with increased apoptosis.

  • PDF

Effect of Conductor's Arrangement and Current Direction on AC Loss Characteristics of a Fault Current Limiting Coil (도체의 배열 및 전류방향이 코일형 한류소자의 교류손실 특성에 미치는 영향)

  • Ma Y. H.;Ryu Kyung-Woo;Park K. B.;Oh Il-Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.17-20
    • /
    • 2005
  • AC loss of a high $T_c$ superconducting conductor has a strong influence on the economic viability of a superconducting fault current limiter, which offers an attractive means to limit short circuit current in the power systems. Therefore, several samples of the fault current limiting coils have been fabricated and the effect of conductor's arrangement and current direction on AC loss characteristics investigated experimentally The test result shows that the AC losses measured in the fault current limiting coils depend significantly on the conductor's arrangement. Futhermore, they are also considerably influenced by the conductor's current direction. The AC loss measured in the face-to-face arrangement is smallest among the fault current limiting coil samples.

Assessment of Seed Viability and Vigour in Neem (Azadirachta indica A. Juss.)

  • Kumar, Devendra
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.4
    • /
    • pp.282-291
    • /
    • 2013
  • Rapid loss in viability of neem (Azadirachta indica A. Juss.) seed is a major problem. Present effort was undertaken for developing a set pattern for assessing of viability and vigour in seed of various mother tree age of neem (Age I-06 years, Age II-15 years, Age III-25 years and Age IV->30 years old). Various viability test viz. triphenyle tetrazolium chloride test, electrical conductivity, excised embryo test, and germination test have been performed on seeds obtained from mother tree age classes. Inconsistency was observed with the TTC and EC test in germination of seed in laboratory as well as nursery. While various vigour tests viz. cold test, chemical stress test (methanol stress test), and accelerated ageing test alongwith ageing index, germination test (G%, MGT and GV) and various seedling growth parameters like seedling length (cm), number of leaves, collar diameter (cm), total biomass (g) alongwith mathematical indices i.e. vigour index, sturdiness quotient, volume index, quality index, root shoot ratio in nursery as well have been taken for study and showed better consistency. On the basis present study results of various viability and vigour test indicated that mother tree age class II performed better in comparison to others and it can be recommended for seed collection. Further it is also recommended that viability of neem seed may be assessed using various laboratory tests like excise embryo test and germination test (G%, MGT and GV) and vigour test may be taken preferably by cold germination test, chemical (methanol) stress test, accelerated ageing test in laboratory and germination alongwith various seedling growth parameters seedling length (cm), number of leaves, collar diameter (cm), total biomass (g) alongwith mathematical indices like Vigour Index, Sturdiness quotient, Volume Index, Quality index, root shoot ratio in nursery as discussed in this study.

Beneficial effect of Orostachys japonicus A. berger herbal acupuncture on oxidant-induced cell injury in renal epithelial cell (와송약침액이 Oxidant에 의한 신장세포손상에 미치는 영향)

  • Park, Sang-Won;Kim, Cheol-Hong;Youn, Hyoun-Min;Jang, Kyung-Jeon;Ahn, Chang-Beohm;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.24 no.1
    • /
    • pp.171-187
    • /
    • 2007
  • Objectives : This study was performed to determine if Orostachys japonicus A. Berger herbal acupuncture (OjB) provides the protective effect against the loss of cell viability and DNA damage induced by oxidant in renal proximal tubular cells. Methods : The cell viability was evaluated by a MTT reduction assay and DNA damage was estimated by measuring double stranded DNA breaks in opossum kidney (OK) cells, an established proximal tubular cell line. Lipid peroxidation was determined by measuring malondialdehyde (MDA), a product of lipid peroxidation. Results : H2O2 increased the loss of cell viability in a time-dependent manner, which were prevented by 0.1% OjB. The protective effect of OjB was dose-dependent over concentration range of 0.05-0.5%. H2O2 caused ATP depletion and DNA damage, which were prevented by OjB and the hydrogen peroxide scavenger catalase. The loss of cell viability by H2O2 was not affected by the antioxidant DPPD, but lipid peroxidation by the oxidant was completely inhibited by DPPD. Generation of superoxide and H2O2 in neutrophils activated by phorbol-12,13-dibutyrate was inhibited by OjB in a dose-dependent manner. OjB inhibited generation of H2O2 in OK cells treated with antimycin A and exerted a direct H2O2 scavenging effect. Exposure of OK cells to 1 mM tBHP caused a significant depletion of glutathione which was prevented by OjB. OjB accelerated the recovery in cells cultured for 20 hr in normal medium without oxidant following oxidative stress. Conclusions : These results suggest that OjB exerts the protective effect against oxidant-induced cell injury and its protective effect was resulted from radical scavenging and antioxidant activities.

  • PDF

Transmission Loss Estimation of Three Dimensional Silencers with Perforated Internal Structures Using Multi-domain BEM

  • Ju Hyeon-Don;Lee Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1568-1575
    • /
    • 2005
  • The calculation of the transmission loss of the silencers with complicated internal structures by the conventional BEM combined with the transfer matrix method is incorrect at best or impossible for 3-dimensional silencers due to its inherent plane wave assumption. On this consideration, we propose an efficient practical means to formulate algebraic overall condensed acoustic equations for the whole acoustic structure, where particle velocities on the domain interface boundaries are unknowns, and the solutions are used later to compute the overall transfer matrix elements, based on the multi-domain BEM data. The transmission loss estimation by the proposed method is tested by comparison with the experimental one on an air suction silencer with perforated internal structures installed in air compressors. The method shows its viability by presenting the reasonably consistent anticipation of the experimental result.

Differential Inhibition of $MPP^+$- or 6-Hydroxydopamine-induced Cell Viability Loss in PC12 Cells by Trifluoperazine and W-7

  • Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.247-253
    • /
    • 2005
  • The present study assessed the effect of calmodulin antagonists trifluoperazine and W-7 against the cytotoxicity of $MPP^+$ and 6-bydroxydoparnine (6-OHDA) in relation to the mitochondrial dysfunction and cell death in PC12 cells. Trifluoperazine (an inhibitor of the mitochondrial permeability transition and calmodulin antagonist) and W-7 (a specific calmodulin antagonist) significantly attenuated the $MPP^+-induced$ cell viability loss in PC12 cells with a maximum inhibition at $0.5{\sim}1{\mu}M$; beyond these concentrations the inhibitory effect declined. Both compounds at this concentration range did not cause cell death significantly. In contrast to $MPP^+$, the trifluoperazine and W-7 did not depress the cytotoxic effect of 6-OHDA. Addition of trifluoperazine and W-7 inhibited the cytosolic accumulation of cytochrome c and caspase-3 activation in PC12 cells treated with $MPP^+$ and attenuated the formation of reactive oxygen species and the depletion of GSH, whereas both compounds did not reduce the effect of 6-OHDA. The results show that trifluoperazine and W-7 may attenuate the cytotoxicity of $MPP^+$ by inhibition of the mitochondrial permeability transition and calmodulin. Meanwhile, the cytotoxic effect of 6-OHDA seems to be mediated by the actions, which are different from $MPP^+$.

Kung-kyung-IlHo-jeon on Induced Apoptosis in Human Cervical Careinoma HeLa Cells (궁경1호전(宮頸1號煎)이 자궁경부암세포(子宮頸部癌細胞)(HeLa Cell)에 미치는 영향(影響))

  • Kang, Young-Keum;Choe, Chang-Min;Cho, Han-Back;Yoo, Sim-Keun
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.1
    • /
    • pp.15-28
    • /
    • 2005
  • To address the ability of Kung-Kyung-Ilho-Jeon(KK) to induce cell death, we investigated the effect of KK on cell viability. Forty-eight hours later, loss of viability occurred following KK exposure in a dose-dependent manner. The treatment of KK, a commonly used herb formulation in Korea and China, caused a decrease in cell viability. KK also resulted in apoptotic morphology a brightly blue-fluorescent condensed nuclei by Hoechst 33258-staining, and reduction of cell volume. Our results show that KK induces caspase-3 and -9 activation in a time-dependent manner. In addtion, the translocation of cytochrome c release into cytoplasm has been observed under the presence of $5mg/m{\ell}$ KK. The subsequent loss of mitochondria membrane potential is collapsed by the addition of KK. Our immunoblotting data show that PARP, a well known caspase-3 and -6 substrate, is cleaved by KK. We show that a pro-apoptotic protein, Bax is increased in the presence of KK but that the amount of Bcl-2 is not changed. We suggest that Bax, a critical protein which can regulate channel of mitochondria to release cytochrome c, is a key protein in KK-induced apoptosis of Hela human cervical carcinoma cells

  • PDF

Trehalose Protects the Probiotic Yeast Saccharomyces boulardii against Oxidative Stress-Induced Cell Death

  • Moon, Ji Eun;Heo, Wan;Lee, Sang Hoon;Lee, Suk Hee;Lee, Hong Gu;Lee, Jin Hyup;Kim, Young Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.54-61
    • /
    • 2020
  • Saccharomyces boulardii is the only probiotic yeast with US Food and Drug Administration approval. It is routinely used to prevent or treat acute diarrhea and other gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. The formation of reactive oxygen species (ROS), specifically H2O2 during normal aerobic metabolism, contributes to programmed cell death and represents a risk to the viability of the probiotic microbe. Moreover, a loss of viability reduces the efficacy of the probiotic treatment. Therefore, inhibiting the accumulation of ROS in the oxidant environment could improve the viability of the probiotic yeast and lead to more efficacious treatment. Here, we provide evidence that supplementation with a non-reducing disaccharide, namely trehalose, enhanced the viability of S. boulardii exposed to an oxidative environment by preventing metacaspase YCA1-mediated programmed cell death through inhibition of intracellular ROS production. Our results suggest that supplementation with S. boulardii together with trehalose could increase the viability of the organism, and thus improve its effectiveness as a probiotic and as a treatment for acute diarrhea and other gastrointestinal disorders.