• Title/Summary/Keyword: vertical vortex pairs

Search Result 2, Processing Time 0.017 seconds

Numerical and wind tunnel simulation of pollutant dispersion in the near wake of buildings

  • Wang, X.;McNamara, K.F.
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.427-442
    • /
    • 2005
  • Numerical and wind tunnel simulations of pollutant dispersion around rectangular obstacles with five aspect ratios have been conducted in order to identify the effects of flow patterns induced by buildings on plume dispersion in the near wake of buildings. An emission from a low source located upwind of obstacles was used in this simulation. The local flow patterns and concentrations around a cubical obstacle were initially investigated using three RANS turbulence models, (the standard $k-{\varepsilon}$, Shear Stress Transport (SST), Reynolds-Stress RSM turbulence model) and also using Large-eddy simulation (LES). The computed concentrations were compared with those measured in the wind tunnel. Among the three turbulence models, the SST model offered the best performance and thus was used in further investigations. The results show, for normal aspect ratios of width to height, that concentrations in the near wake are appreciably affected because of plume capture by the horseshoe vortex and convection by the vertical vortex pairs. These effects are less important for high aspect ratios. Vertical vortex pairs present a strong ability to exchange mass vertically and acts efficiently to reduce ground-level concentrations in the near wake.

Internal flow visualization of an evaporating droplet placed on heated metal plate (가열된 금속표면에 놓인 증발하는 액적의 내부유동 가시화)

  • Park, Chang-Seok;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • This study aims to visualize the Marangoni flow inside a droplet placed on heated hydrophobic surface and to measure its internal velocity field. The experimental result shows that the internal velocity increases with the increase of the plate temperature. In addition, the temperature difference induces the initial flow and drives the Marangoni circulation inside the droplet as soon as the evaporation starts (i.e. the thermal Marangoni flow). The fluorescence particles in the droplet trace two large-scale counter-rotating vortex pairs yielding the downwards flow along the vertical central axis. These vortex pairs gradually become small and move towards the contact line as time goes by, and this Marangoni flow sustains only for a half of the total evaporation time.