• Title/Summary/Keyword: vertical velocity distribution

Search Result 186, Processing Time 0.025 seconds

Effect of moisture content on terminal velocities of domestic wheat and foreign materials (함수율에 따른 우리밀과 이물의 종말속도에 미치는 영향)

  • Choi, Eun-Jung;Kim, Hoon;Kim, Sang-Suk;Kim, Oui-Woung
    • Food Science and Preservation
    • /
    • v.23 no.5
    • /
    • pp.746-752
    • /
    • 2016
  • This research was carried out to identify aerodynamic property as a function of moisture content for designing equipment such as for post-harvest management. Terminal velocity of two wheat varieties {Backjjung (B) and Jogyeong (J)} with selected sound, damaged kernel and foreign materials (Wheat stick, Wheat husks) were measured with a designed vertical wind column at different moisture contents from about 9 to 30% wet basis. The results showed that terminal velocity of wheat and foreign materials except of Jogyeong's husks (p<0.05) had a significant difference at p<0.001. With increasing moisture content, the aerodynamic property values of the kernels and foreign materials of the two wheat varieties increased linearly. In detail, terminal velocity of sound and damaged kernel increased from 5.46 to 7.13 m/sec (B) and 7.48 to 8.60 m/sec (J), damaged kernel from 5.91 to 7.00 m/sec (B) and 6.48 to 7.75 m/sec (J). For foreign materials the terminal velocity of wheat stick increased from 2.92 to 4.07 m/sec (B) and 3.74 to 5.22 m/sec (J) whereas that of husks from 1.07 to 1.85 m/sec (B) and 2.02 to 2.33 m/sec (J) each. For air separation of wheat and foreign materials, the air flow should be less than 5.22 m/sec due to the range (1.07~5.22 m/sec) of foreign materials in wheat.

A Study of Smoke Movement in a Short Tunnel (짧은 터널 내의 연기거동에 관한 연구)

  • Kim, Sung-Chan;Ryou, Hong-Sun;Kim, Chung-Ik;Hong, Ki-Bae
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • This paper concerns smoke propagation in tunnel fires with various size of fire source. Experiments carried out in model tunnel and those results were compared with numerical results. The Froude scaling law was used to scale model tests for comparison with larger scale tests. In order to validate for numerical analysis, temperature distribution of predicted data was compared with measured data. Examining the temperature distribution, we found that smoke layer does not come down under 50% of tunnel heights for a short tunnel heights for a short tunnel firs without ventilation. Front velocity of smoke layer is proportional to the cube root of heat release rate. And it is in good agreement with existing empirical expression and numerical prediction. In a short tunnel fire, horizontal propagation of smoke layer is more important than vertical smoke movement for evacuation plan.

Higher-order Spectral Method for Regular and Irregular Wave Simulations

  • Oh, Seunghoon;Jung, Jae-Hwan;Cho, Seok-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.406-418
    • /
    • 2020
  • In this study, a nonlinear wave simulation code is developed using a higher-order spectral (HOS) method. The HOS method is very efficient because it can determine the solution of the boundary value problem using fast Fourier transform (FFT) without matrix operation. Based on the HOS order, the vertical velocity of the free surface boundary was estimated and applied to the nonlinear free surface boundary condition. Time integration was carried out using the fourth order Runge-Kutta method, which is known to be stable for nonlinear free-surface problems. Numerical stability against the aliasing effect was guaranteed by using the zero-padding method. In addition to simulating the initial wave field distribution, a nonlinear adjusted region for wave generation and a damping region for wave absorption were introduced for wave generation simulation. To validate the developed simulation code, the adjusted simulation was carried out and its results were compared to the eighth order Stokes theory. Long-time simulations were carried out on the irregular wave field distribution, and nonlinear wave propagation characteristics were observed from the results of the simulations. Nonlinear adjusted and damping regions were introduced to implement a numerical wave tank that successfully generated nonlinear regular waves. According to the variation in the mean wave steepness, irregular wave simulations were carried out in the numerical wave tank. The simulation results indicated an increase in the nonlinear interaction between the wave components, which was numerically verified as the mean wave steepness. The results of this study demonstrate that the HOS method is an accurate and efficient method for predicting the nonlinear interaction between waves, which increases with wave steepness.

Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow

  • Qiu, Chengcheng;Pan, Guang;Huang, Qiaogao;Shi, Yao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.102-115
    • /
    • 2020
  • In this study, the SST k - ω turbulence model and the sliding mesh technology based on RANS method have been adopted to simulate the exciting force and hydrodynamic of a pump-jet propulsor in different oblique inflow angle (0°, 10°, 20°, 30°) and different advance ratio (J = 0.95, J = 1.18, J = 1.58).The fully structured grid and full channel model have been adopted to improved computational accuracy. The classical skewed marine propeller E779A with different advance ratio was carried out to verify the accuracy of the numerical simulation method. The grid independence was verified. The time-domain data of pump-jet propulsor exciting force including bearing force and fluctuating pressure in different working conditions was monitored, and then which was converted to frequency domain data by fast Fourier transform (FFT). The variation laws of bearing force and fluctuating pressure in different advance ratio and different oblique flow angle has been presented. The influence of the peak of pulsation pressure in different oblique flow angle and different advance ratio has been presented. The results show that the exciting force increases with the increase of the advance ratio, the closer which is to the rotor domain and the closer to the blades tip, the greater the variation of the pulsating pressure. At the same time, the exciting force decrease with the oblique flow angle increases. And the vertical and transverse forces will change more obviously, which is the main cause of the exciting force. In addition, the pressure distribution and the velocity distribution of rotor blades tip in different oblique flow angles has been investigated.

The Fluctuation of Marine Aerosol Number Concentrations Related with Vertical Winds (연직풍에 따른 해양성 에어러솔 수 농도 변동에 관한 연구)

  • Park, Sung-Hwa;Jang, Sang-Min;Jung, Woon-Seon;Jeong, Jong-Hoon;Lee, Dong-In
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.259-268
    • /
    • 2012
  • To investigate the fluctuation of marine aerosol number concentration at each different size with vertical winds in ocean area, aerosol particles and vertical wind components were measured in the Ieodo Ocean Research Station, which is located to 419 km southwest of Marado, the southernmost island of Korea, from 8 to 22 June 2009. The Laser Particle Counter (LPC) and ultrasonic anemometer were used to measure the number of aerosol particles and vertical wind speed. Surface weather chart, NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large fluctuation of bigger particles more than 1.0 ${\mu}m$ in diameter by vertical wind speed during precipitation. The aerosol particles larger than 1.0 ${\mu}m$ in diameter increased as the wind changed from downward to upward during precipitation. The aerosol number concentration of bigger size than 1.0 ${\mu}m$ in diameter increased about 5 times when vertical velocity was about 0.4 $ms^{-1}$. In addition, the accumulation and coarse mode aerosol number concentration decreased about 45% and 92%, respectively compared to concentrations during precipitation period. It is considered that vertical wind plays an important role for the increasing of coarse mode aerosol number concentration compared to the large aerosol particles sufficiently removed by the scavenging effect of horizontal winds. Therefore, the upward vertical winds highly contribute to the formation and increase in aerosol number concentration below oceanic boundary layer.

Large eddy simulation of a steady hydraulic jump at Fr = 7.3 (Fr = 7.3의 정상도수 큰와모의)

  • Paik, Joongcheol;Kim, Byungjoo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1049-1058
    • /
    • 2023
  • The flow passing through river-crossing structures such as weirs and low-fall dams is dominated by rapidly varied flow including hydraulic jump. The intense unsteadiness of flow velocity and free surface profile affects the stability of such hydraulic structures. In particular, the steady hydraulic jump generated at high Froude number conditions includes remarkably air entrainment, making the flow characteristics more complicated. In this study, a large-eddy simulation was performed for turbulence effect and the hybrid VoF technique to simulate the steady hydraulic jump at the Froude number of 7.3 and the Reynolds number of 15,700. The results of the numerical simulation showed that the instantaneous maximum pressure and time-average pressure distribution calculated on the bottom surface downstream of the structure could be reasonably well reproduced being in good agreement with the experimental values. However, the instantaneous minimum pressure distribution in the direct downstream of the structure shows the opposite pattern to the target experimental measurement value. However, the numerical simulation performed in this study is considered to reasonably predict the minimum pressure distributions observed in various experiments conducted at similar conditions. The vertical distributions of flow velocity and air concentration computed in the center of the hydraulic jump were found to be in good agreement with the experimental results measured under similar conditions, showing self-similarity. These results show that the large eddy simulation and hybrid VoF techniques applied in this study can reproduce the hydraulic jump with strong air entrainment and the resulting intense free surface and pressure fluctuations at high Froude number conditions.

Numerical Simulation for Estimating Fish Shelter at the Downstream of Gumi Weir (수리구조물 하류에서 어류의 피난처 해석을 위한 수치모의 (구미보를 중심으로))

  • Cho, Hyoung Jin;Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.1
    • /
    • pp.8-18
    • /
    • 2014
  • This study analyzes characteristics of flow using 3 dimensional numerical model, Delft3D, at the downstream of hydraulic structure. And fish shelters are suggested by analyzing them in flood time. A hydraulic structure changes flow conveyance, water depth and velocity affecting the activity of the fish. Flow depth decreases and velocity is fast near the left bank at the downstream of Gumi weir because of the concentration of flow due to it. Therefore, fish shelters are generated near the right bank of it. As a result of vertical velocity distribution which indicates the range of fish activity, maximum value are 0.0043 m/s in 30-year of return period of flood 0.0052 m/s in 50 year flood, 0.0046 m/s in 80-year of return period of flood, and 0.0039 m/s in 100-year of return period of flood. As the discharge increases, the areas of fish shelters decreases because depth and turbulent energy increase according to increases discharge. The estimated areas of fish shelters near the right bank decrease from 61.5% in 30-year of return period of flood to 39.0% 100-year of return period of flood. Therefore, the constructed hydraulic structures affect fish shelters.

A Numerical Model of Three-dimensional Soil Water Distribution for Drip Irrigation Management under Cropped Conditions (작물 흡수를 고려한 3차원 토양수분 분포 모델 개발을 통한 최적 점적 관개 연구)

  • Kwon, Jae-Phil;Kim, Seung-Hyun;Yoo, Sun-Ho;Ro, Hee-Myong
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.116-123
    • /
    • 2000
  • A numerical model of three-dimensional soil water distribution for drip irrigation management under cropped conditions was developed using Richards equation in Cartesian coordinates. The model accounts for both seasonal and diurnal changes in evaporation and transpiration, and the growth of plant root and the shape of root zone. Solutions were numerically approximated using the Crank-Nicolson implicit finite difference technique on the block-centered grid system and the Gauss-Seidel elimination in tandem. The model was tested under several conditions to allow the flow rates and configurations of drip emitters vary. In general, simulation results agreed well with experimental results and were as follows. The velocity of soil-water flow decreased drastically with distance from the drip source, and the rate of expansion of the wetted zone decreased rapidly during irrigation. The wetting front of wetted zone from a surface drip emitter traveled farther in vertical direction than in horizontal direction. Under this experimental weather condition, water use efficiency of a drip-irrigated apple field was greatest for 4-drip-emitter system buried at 25 cm, resulting from 10% increase in transpiration but 20% reduction in soil evaporation compared to those for surface 1-drip emitter system. Soil moisture retention curve obtained using disk tension infiltrometer showed significant difference from the curve obtained with pressure plate extractor.

  • PDF

A study on the flow characteristics in a MILD combustion waste incinerator with the change of flue gas recirculation inlet location (MILD 연소 폐기물 소각로에서 배기가스 재순환 흡입구 위치에 따른 유동 특성 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Jung, Eung Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2014
  • A MILD(Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow position of hot exhaust gas to the combustion furnace. A numerical analysis was accomplished to elucidate the flow characteristics in the MILD combustion incinerator for several cases with or without exhaust gas recirculation. It could be seen from the result of the present numerical study that the flow recirculation could be observed in the upper region over the vertical dividing wall for the case without exhaust gas recirculation. The optimal position of exhaust gas recirculation position was derived by the comparison of %RMS of x directional velocity for the cases with exhaust gas recirculation. The case with the exhaust gas recirculation position at the upper right of free board was the most effective with the smallest value of 57.4% RMS.

Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall (적운 모수화 방안이 고해상도 집중호우 예측에 미치는 영향)

  • Lee, Jae-Bok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.391-404
    • /
    • 2011
  • This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.