• Title/Summary/Keyword: vertical loading

Search Result 792, Processing Time 0.029 seconds

Development of a seismic retrofit system made of steel frame with vertical slits

  • Kang, Hyungoo;Adane, Michael;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.283-294
    • /
    • 2022
  • In this study, a new seismic retrofit scheme of building structures is developed by combining a steel moment frame and steel slit plates to be installed inside of an existing reinforced concrete frame. This device has the energy dissipation capability of slit dampers with slight loss of stiffness compared to the conventional steel frame reinforcement method. In order to investigate the seismic performance of the retrofit system, it was installed inside of a reinforced concrete frame and tested under cyclic loading. Finite element analysis was carried out for validation of the test results, and it was observed that the analysis and the test results match well. An analytical model was developed to apply the retrofit system to a commercial software to be used for seismic retrofit design of an example structure. The effectiveness of the retrofit scheme was investigated through nonlinear time-history response analysis (NLTHA). The cyclic loading test showed that the steel frame with slit dampers provides significant increase in strength and ductility to the bare structure. According to the analysis results of a case study building, the proposed system turned out to be effective in decreasing the seismic response of the model structure below the given target limit state.

A systematic comparison of the wind profile codifications in the Western Pacific Region

  • Jiayao Wang;Tim K.T. Tse;Sunwei Li;Tsz Kin Chan;Jimmy C.H. Fung
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.105-115
    • /
    • 2023
  • Structural design includes calculation of the wind speed as one of the major steps in the design process for wind loading. Accurate determination of design wind speed is vital in achieving safety that is consistent with the economy of construction. It is noticeable that many countries and regions such as Hong Kong, Japan and Australia regularly make amendments to improve the accuracy of wind load estimations for their wind codes and standards. This study compares the latest Hong Kong wind code published in 2019, which is generally known as the Code of Practice on Wind Effects in Hong Kong - 2019, with the latest revision of the AIJ Recommendations for Loads on Buildings - 2015 (Japan), and the Australian/New Zealand Standard, AS/NZS 1170.2:2021. The comparisons include the variations between the design wind speed and the vertical profiles of wind speed multipliers. The primary purpose of this study was to show any differences in the basic design wind speed and exposure factor estimations among the three economies located in the Western Pacific Ocean. Subsequently, the reasons for such underlying variations between the three documents, are discussed, together with future development trends.

Influence of 'Sumgol' in Jeju on Ground Stability under Various Loading Conditions (다양한 하중 조건하에서 제주도의 특수한 지반 '숨골'을 고려한 지반의 안정성 검토)

  • Ban, Hoki;Kim, Donggyou
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.41-48
    • /
    • 2022
  • Jeju island has a special ground layer called 'Sumgol' due to the geological characteristics. The terminology 'Sumgol' is generally defined as the rain fall flows through the Sumgol without blocking and smaller size than cave, which men cannot enter. This paper presents the influence of the Sumgol on ground stability under various loading conditions using numerical simulations when the airport is constructed. The results showed that the vertical settlements of each section are within the allowable settlement.

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.

Characteristics of Undrained Shear Strength of Yangsan Clay (양산지역 점토의 비배수 전단강도 특성)

  • 김길수;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.71-78
    • /
    • 2000
  • SHANSEP method involves the consolidation to stresses in excess of the preconsolidation pressure in order to overcome sample disturbance effect. The concept of SHANSEP is based on an approach to laboratory test which attempts to reproduce the in-situ conditions more closely than is possible in routine tests and evaluates normalized strength parameters for the soil as a function of OCR. But SHANSEP method can be applied only to fairly uniform clay deposits, and is unsuitable for a random deposit. In this study, CK/sub o/U triaxial compression test and incremental loading consolidation test were performed for the application of SHANSEP method on Yangsan clay. During the K/sub o/-consolidation, triaxial specimens were consolidated to stress equal to two times the in-situ vertical effective stress. And for overconsolidated condition, the specimens were swelled to a known vertical effective stress in order to have the desired OCR. With the results of CK/sub o/U triaxial compression test using the block samples, the relationship between c/sub u//σ/sub vc/' and OCR on Yangsan clay was established. For evaluating the undrained shear strength of Yangsan clay with depth, CK/sub o/U triaxial compression test was performed using the piston samples taken from Yangsan site. And also undrained shear strength was analyzed from the in-situ test such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that of CK/sub o/U triaxial compression test.

  • PDF

Lateral deformation capacity and stability of layer-bonded scrap tire rubber pad isolators under combined compressive and shear loading

  • Mishra, Huma Kanta;Igarashi, Akira
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.479-500
    • /
    • 2013
  • This paper presents the experimental as well as analytical study conducted on layer-bonded scrap tire rubber pad (STRP) isolators to develop low-cost seismic isolators applicable to structures in developing countries. The STRP specimen samples were produced by stacking the STRP layers one on top of another with the application of adhesive. In unbonded application, the STRP bearings were placed between the substructure and superstructure without fastening between the contact surfaces which allows roll-off of the contact supports. The vertical compression and horizontal shear tests were conducted with varying axial loads. These results were used to compute the different mechanical properties of the STRP isolators including vertical stiffness, horizontal effective stiffness, average horizontal stiffness and effective damping ratios. The load-displacement relationships of STRP isolators obtained by experimental and finite element analysis results were found to be in close agreement. The tested STRP samples show energy dissipation capacity considerably greater than the natural rubber bearings. The layer-bonded STRP isolators serve positive incremental force resisting capacity up to the shear strain level of 150%.

Ferroelastic Domain and Refractive Property of $Gd_{2}(MoO_{4})_{3}$ Single Crystal ($Gd_{2}(MoO_{4})_{3}$ 단결정의 강탄성구역과 굴절률특성)

  • Son, Jong-Yoon;Lee, Chan-Ku;Lee, Su-Dae;Kim, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.98-102
    • /
    • 2002
  • We investigated domains and conoscope under the polarizing microscope and the index of refraction on the c-plate GMO which has the ferroelectric and ferroelastic phase at room temperature. To observed the change of refractive index in connection with domain, we developed an apparatus to obtain the refractive index by measuring the Brewster's angle. The resolution of the minimum rotation angle of this apparatus is $0.001^{\circ}$. To obtain the refractive index map on the sample, the moving distance of XY stage loaded sample holder is 60 mm and the minimum moving distance is 0.002 mm. Also, To obtain the indicatrix for single crystal, vertical turntable with sample holder and XY stage was loading on horizontal turntable. The minimum resolution angle of this vertical turntable is $0.001^{\circ}$. We measured the refractive index of transparent materials such as ferroelectrics. In the case of $Gd_{2}(MoO_{4})_{3}$, the Brewster angle is $62.11^{\circ}$ and then, the refractive index is 1.8895 by using He-Ne Laser. Also the refractive distribution of c-plate GMO was obtained with $400{\mu}m{\times}120{\mu}m$.

  • PDF

Experimental Comparison of the Wave Force on Crown Wall of Sloping Breakwater Armored with Tetrapods under Obliquely Incident Waves (경사입사 시 테트라포드로 피복된 경사제 상부구조물에 작용하는 파력 비교 실험)

  • Oh, Sang-Ho;Lee, Jooyeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.161-169
    • /
    • 2020
  • Physical experiments have been performed in a wave basin to investigate change of the wave loading on the crown wall under obliquely incident wave conditions. The measurement was carried out with wave incidence angle of 0, 15, 30 and 45°. The pressure transducers were placed on the front and bottom face of the crown wall to obtain horizontal and uplift force as well. It was found that both the horizontal and vertical force decreases with the incidence angle. Based on the analysis of the experimental data, a formula was suggested to estimate the reduction rate of horizontal and vertical forces under obliquely incident waves.

A Study on the Structural Analysis and Test of an Electric Car-Body (전동차 차체 구조물에 대한 구조해석 및 실험에 관한 연구)

  • 전형용;성낙원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.28-36
    • /
    • 1998
  • This investigation is the result of a structural analysis by the finite element method and static loading test for the optimal structural design of an electric railway vehicle made of stainless 301L materials. We analyzed the stress and displacement of the existing electric car-body structure for predicting the position of concentrated stress, the flow of stress, rigidity to be occurred in the car-body structure when it is subjected to the vertical load. It was exposed that the side sills and window corners around the bolsters are the weak parts of the electric car-body structure because the bolsters of the electric car-body structure were subjected to the vertical load and dynamic load to be occurred during running. The flow of stress and the cause of stress concentration in the weak zone were studied in order to prevent the concentration of stress and buckling. The rearrangement of the structure and the selection of the beam elements were also carried out for optimum design of the structure.

  • PDF

Numerical analysis of Consolidation Behavior under Various Drainage Conditions (배수조건에 따른 압밀 거동의 수치적 분석)

  • Oh, Sang-Ho;Cho, Wan-Jei;Yune, Chan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1194-1199
    • /
    • 2010
  • Systematic finite element analyses on consolidation were performed with various drainage conditions. Numerical analyses were performed using SAGE CRISP2D, a commercial numerical analysis program for the conventional geotechnical engineering practice. For the input properties of the numerical analyses, incremental loading oedometer tests were performed on reconstituted kaolinite samples. Numerical analyses were performed with various drainage conditions such as vertical, radially inward and outward drainage conditions. For the case of radially inward drainage conditions, a series of numerical analyses were performed with varying the diameter of vertical drains. As a result, the lateral deformation and void ratio variation occurred during consolidation for the radially inward or outward drainage conditions. And the variations of the lateral deformation and void ratio did not fully disappear even after the completion of the consolidation and induced the spatial variations of the soil properties. Keywords : finite element analysis of consolidation, various drainage conditions, lateral deformation, spatial variation of soil properties.

  • PDF