• 제목/요약/키워드: vertical joints

검색결과 255건 처리시간 0.026초

반복하중을 받는 PC 전단벽체에서 수직접합부의 개발 및 내진성능평가 (Development and Seismic Performance of Vertical Joints in Precast Concrete Shear Walls under Cyclic Loads)

  • 김욱종;오재근;강수민
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.140-148
    • /
    • 2012
  • 최근 PC 공법을 도입하려는 시도가 많이 이루어지고 있다. 그러나 PC 벽체에 대한 연구는 개발의 어려움이 있어 상대적으로 더디게 발전되어 왔다. 본 연구에서는 PC벽체의 기존의 접합부의 시공성 및 구조성능을 개선하기 위하여 수직접합부의 개선안을 개발하였고, 이에 대한 구조성능평가를 진행하였다. 제안된 PC벽체의 수직접합부 구조적인 성능을 검증하기 위하여 반복적인 횡하중 재하시험을 진행한 결과, 기존의 일체형 PC벽체와 동등이상의 내진성능을 발휘하는 것으로 나타나 향후 구조물의 주요 횡력저항요소로 충분히 적용가능할 것으로 판단된다.

전단키를 갖는 프리캐스트 콘크리트 패널 수직접합부의 전단강도 (Shear Strength of Vertical Joints in Precast Concrete Panel with Shear Key)

  • 이상섭;박금성;배규웅
    • 대한건축학회논문집:구조계
    • /
    • 제35권9호
    • /
    • pp.151-158
    • /
    • 2019
  • A concrete core is used widely as lateral stability systems in high-rise modular buildings. As an alternative to traditional cast in-situ core, the precast concrete(PC) method can accelerate the construction of reinforced concrete cores. A core composed of precast elements differs from a in-situ core in having connections between the precast elements. The typical vertical connection between PC panels is consisted of shear keys, loop bars, lacer bars and grout. In this study, the effect of vertical connection components on shear strength is investigated experimentally. The test results show that the contribution to the shear strength is greater in order of grout strength, shear keys, lacer bars and loop bars. In addition, the numerical models to estimate the shear strength according to two crack patterns in the vertical joint of the PC panels are derived. The feasibility of the numerical models is evaluated by comparing the estimated shear strength and the test results.

낙엽송집성재를 이용한 기계프리커트 주먹장접합부의 인장성능 (Tensile Performance of Machine-Cut Dovetail Joint with Larch Glulam)

  • 박주생;황권환;박문재;심국보
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권3호
    • /
    • pp.199-204
    • /
    • 2010
  • 전통공법에서는 주로 소나무를 수가공하여 구조부재로 사용하고 있다. 주먹장 접합(이음, 맞춤)은 일반 가구나 구조부재의 접합에 사용되고 있으며, 수가공이나 간단한 기계가공에 의해 쉽게 가공할 수 있는 이점이 있다. 비록 외관상 선형적인 가공이 주를 이루지만, 손쉬운 짜맞춤이 될 수 있어야 하는 고도의 가공정밀성이 요구된다. 더욱이, 장부와 장부받이는 틈새없는 긴결한 접합이 이루어져야 한다. 주먹장접합부에 대한 과학적인 연구는 체계적으로 수행된 예가 많지 않으므로 전통공법과 국산재 활용이라는 관점에서 낙엽송집성재를 기계가공하여 이용하였다. 통주먹장이음 접합부의 인장성능을 파악하기 위하여 150 mm 정각 낙엽송 집성재를 사용하였으며, 내력성능에 영향을 끼치는 주먹장의 다양한 기하학적 요소(장부 너비, 길이, 각도)에 대해 조사하였다. 보강목을 설치하지 않은 시험편은 장부받이(장부홈)의 모서리부에서 할렬이 발생하며 내력도 낮게 나타났다. 기둥머리의 화통맞춤 및 주두와 같은 상황을 고려한 보강시험편은 최대인장내력에서 2배 이상의 성능을 발휘하였다. 장부의 적정각도는 25도 수준이었으며, 어깨폭의 변화와는 상관성이 없는 것으로 나타났다.

전신진동운동이 수직점프 시 하지관절에 미치는 영향 (The effect of whole body vibration on lower joints in vertical jump)

  • 이재훈
    • 디지털융복합연구
    • /
    • 제14권6호
    • /
    • pp.513-518
    • /
    • 2016
  • 다양한 연구결과에도 불구하고 전신진동운동이 인체에 미치는 기전은 명확히 제시되고 있지 않으며, 진동이 하지관절의 운동역학적 변화에 대해 분석한 연구는 미비한 실정이다. 그러므로 이 연구는 어떠한 하지관절의 운동역학적 변인이 수직점프 능력에 영향을 미치는지 분석하고자 한다. 최근 6개월간 하지에 정형외과적 병력이 없는 건강한 성인 남성 5명과 여성 5명은 5분간 30Hz의 전신진동운동을 실시한 전 후로 스쿼트 점프를 각각 3회씩 실시하였고, 수직점프 시 하지관절의 운동역학적 변화를 분석하기 위하여 3D 영상분석 시스템을 활용하였다. 대상자들의 스쿼트 점프 높이는 전신진동운동 처치 이후 향상되는 것으로 나타났으며, 발목과 무릎관절에서 하지관절 모멘트와 파워가 증가하는 것으로 나타났다. 그러나 지면반력 값과 엉덩관절의 모멘트와 파워는 전신진동운동의 처치 전 후에 통계적으로 유의한 차이가 나지 않는 것으로 나타났다. 30Hz의 전신진동운동을 실시한 결과 발목과 무릎관절은 진동이 인체내 긍정적인 영향을 미치는 것으로 나타났으나 엉덩관절의 경우 부정적인 영향을 미치는 것으로 나타났다.

드롭랜딩 시 발목테이핑 유형에 따른 운동역학적 차이 분석 (Analysis of Kinetic Differences According to Ankle Taping Types in Drop Landing)

  • 이경일;홍완기
    • 한국운동역학회지
    • /
    • 제24권1호
    • /
    • pp.51-57
    • /
    • 2014
  • The purpose of this study was to compare and analyze kinetic variables of lower limbs according to types of ankle taping in drop landing. For this, targeting seven male basketball players (average age: $20.8{\pm}0.74yrs$, average height: $187.4{\pm}3.92cm$, average weight: $79.8{\pm}7.62kg$) with no instability of ankle joints, the drop landing motion was conducted according to three types of inelastic taping (C-type), elastic taping (K-type), and no treatment (N-taping). Based on the result, the next conclusion was reached. First, the effect of taping for the players with stable ankles was minimal and the high load on ankle joints offset the fixing effect of inelastic taping. Thus the inelastic taping for the players with stable ankles did not have an effect on the control of dorsal flexion during one-foot landing. Second, increasing angular velocity by increasing the movable range of knee joints disperses impact forces, yet inelastic taping restricted the range of knee joint motion and at the same time increased angular velocity, adding to a negative effect on knee joints. Third, inelastic taping induced inefficient motion of Lower limbs and unstable impact force control of ankle joints at the moment of landing and produced maximum vertical ground reaction force, which led to an increase of load. Therefore, inelastic ankle taping of players whose jump actions occur very often should be reconsidered. Also, it is thought that this study has a great meaning in proving the problem of inelastic taping related to knee pain with unknown causes.

BIOPAK을 이용한 하악의 회전운동에 관한 연구 (A Study on the Mandibular Rotational Movement using Biopak Sysytem)

  • Kyung-Soo Han
    • Journal of Oral Medicine and Pain
    • /
    • 제19권2호
    • /
    • pp.193-203
    • /
    • 1994
  • The author performed this study for investigation of the magnitude of mandibular positional change caused by joint sound during mandibular opening and closing movement. There have been many studies stated mandibular border movement or other functional movement, and there also have been many studies reported clicking sound related to mandibular movement speed, trajectory and clinicl course of temporomandibular disorders(TMDs), but there have not been so many studies stated spatial mandibular position accompanied by joint sound. For this study 46 TM joint from the patients with TMDs were used and they were compared by character and occuring phase of the joint sound. Synchronized data which were amplitude and frequency of joint sound and amount of mandibular positional change were collected through sonopak and BioEGN rotate of Biopak system, respectively. Mandibular position was analyzed for translational and rotational movement change between before and after joint sound. The obtained data were processed with SAS program and summary of this paper were as follows : 1. Mean value of the amount of translational movement in whole joints were 6.0mm in vertical direction, 3.3mm in anteroposterior direction and 0.8mm in lateral direction between before and after joint sound. 2. Mean value of the amount of translational movement in clicking joinnts showed slightly increased tendency than in popping joints. 3. The amount of mandibular change in translational movement during closing phase were more than during opening phase. 4. The amount of mandibular rotational change in whole joints were $1.1^{\circ}$, 1.0mm in frontal plane and $0.9^{\circ}$, and 0.8mm in horizontal plane. 5. The amount of rotational movement were more in clicking joints than in popping joints and were more during closing phase than during opening phase, but statistically significance were showed only in frontal plane.

  • PDF

조선후기 경복궁 근정전 주요 구조재의 맞춤과 이음에 관한 연구 (A Study on the Joint and Splice of wooden Structure at Geunjeongjeon Hall of Gyeongbok Palace in the late Joseon Dynasty)

  • 정연상
    • 건축역사연구
    • /
    • 제16권1호
    • /
    • pp.83-99
    • /
    • 2007
  • This study examines the joint and splice of wooden structure at Geunjeongjeon Hall of Gyengbok Palace, which was constructed in the late Joseon Dynasty. The scope of the study is on the part of columns, the bracket sets, and the frame structure. This research also deals with the relationship between vortical load and horizontal load. Firstly, the examination of the joint and splice methods between the pillar and penetrating ties is on the joint and splice methods of the outer and corner. Through the investigation, it is verified that the joint methods between pillar and penetrating tie on the outer and corner pillars is the method of Sagal joints(cross joints, 사개맞춤). Joints used between pillar and penetrating tie are dovetailed tenon joints, between columns and Anchogong(안초공), between columns and Choikgong(초익공) are tenon joint(장부맞춤). Secondly, the examination of the joint and splice methods of the bracket set is on that of Salmi and Cheomcha(첨차), and Salmi and Janghyeo(장혀). Joints used between Salmi and Cheomcha, Salmi and Janghyeo are halved joint, and between each Janghyeo are stepped dovetailed splice. It is Cheomcha that is used the Jujang-Cheomcha(주장첨차) on center line. Therefore it is connected with each bracket set, which gets to is the strong system, easy and convenient on the construction of that. Thirdly, the frame structure of wooden architecture in royal palace is consist of purlins and beams, Janghyeo(장혀, timber under purlin), tall columns, king posts, etc. Through the investigation, it is verified that the joint and splice methods between purlins and beams are used with the methods of Sungeoteok joint(숭어턱맞춤). It is verified that the joint and splice methods between beams and high columns are used with methods of mortise and tenon joint(장부맞춤), is highly related with tensile force. To reduce the separation of parts, sangi(산지) and tishoi(띠쇠) are used as a counterproposal, which were generally used for architecture in royal Palaces in the late Joseon Dynasty and continued to be used until these days common wooden architecture.

  • PDF

프리캐스트 콘크리트 교량바닥판 female-female이음부의 전단실험 (shear Tests on female-to-female Type Joint between Precast Concrete Bridge Decks)

  • 김영진;김영진;김종희
    • 콘크리트학회지
    • /
    • 제10권6호
    • /
    • pp.161-168
    • /
    • 1998
  • 본 연구는 수직전단하중에 대한 프리캐스트 바닥판간 이음부거동을 규명하고 수직전단력 전달에 유리한 이음부 구조도출을 위해 female-female 형식의 이음부를 제안하고, 실험 및 유한요소해석을 수행한 것이다. 경사각, 이음부깊이/높이 및 구속응력을 변수로 총 18개의 실험체에 대한 실험 및 유한요소해석결과 ,이음부의균열저항성 개선을 위해서는 경사각이 60。, D/H가 1/4일 경우가 유리하며 측방향구속으로 이음부를 압축상태로 유지하는 것이 이음부 균열방지에 효과적임을 알았다.

Simplified analytical model for flexural response of external R.C. frames with smooth rebars

  • Campione, Giuseppe;Cannella, Francesco;Cavaleri, Liborio;Monaco, Alessia
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.531-542
    • /
    • 2018
  • In this paper an analytical model in a closed form able to reproduce the monotonic flexural response of external RC beam-column joints with smooth rebars is presented. The column is subjected to a constant vertical load and the beam to a monotonically increasing lateral force applied at the tip. The model is based on the flexural behavior of the beam and the column determined adopting a concentrated plasticity hinge model including slippage of the main reinforcing bars of the beam. A simplified bilinear moment-axial force domain is assumed to derive the ultimate moment associated with the design axial force. For the joint, a simple truss model is adopted to predict shear strength and panel distortion. Experimental data recently given in the literature referring to the load-deflection response of external RC joints with smooth rebars are utilized to validate the model, showing good agreement. Finally, the proposed model can be considered a useful instrument for preliminary static verification of existing external RC beam-column joints with smooth rebars for both strength and ductility verification.

Dynamic numerical analysis of single-support modular bridge expansion joints

  • Yuan, Xinzhe;Li, Ruiqi;Wang, Jian'guo;Yuan, Wancheng
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2016
  • Severe fatigue and noise problems of modular bridge expansion joints (MBEJs) are often induced by vehicle loads. However, the dynamic characteristics of single-support MBEJs have yet to be further investigated. To better understand the vibration mechanism of single-support MBEJs under vehicle loads, a 3D finite element model of single-support MBEJ with five center beams is built. Successive vehicle loads are given out and the vertical dynamic responses of each center beams are analyzed under the successive loads. Dynamic amplification factors (DAFs) are also calculated along with increasing vehicle velocities from 20 km/h to 120 km/h with an interval 20 km/h. The research reveals the vibration mechanism of the single-support MBEJs considering coupled center beam resonance, which shows that dynamic responses of a given center beam will be influenced by the neighboring center beams due to their rebound after the vehicle wheels depart. Maximal DAF 1.5 appears at 120 km/h on the second center beam. The research results can be utilized for reference in the design, operation and maintenance of single-support MBEJs.