• Title/Summary/Keyword: vertical joints

Search Result 257, Processing Time 0.031 seconds

The Effects of Wearing Roller Shoes on Ground Reaction Force Characteristics During Walking (롤러 신발과 조깅 슈즈 신발 착용 후 보행 시 지면반력의 형태 비교 분석)

  • Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.101-108
    • /
    • 2006
  • The purpose of this study was to compare GRF characteristics during walking wearing jogging and roller shoes. Twelve male middle school students (age: $15.0{\pm}0.0\;yrs$, height: $173.6{\pm}5.0\;cm$, weight: $587.6{\pm}89.3\;N$) who have no known musculoskeletal disorders were recruited as the subjects. Kinematic data from six S-VHS camcorders(Panasonic AG456, 60 fields/s) and GRF data from two force platform; (AMII OR6-5) were collected while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and GRF recordings. GRF data were filtered using a 20 Hz low pass Butterworth. digital filter and further normalized to the subject's body weight. For each trial being analyzed, five critical instants and four phases were identified from the recording. Temporal parameters, GRFs, displacement of center of pressure (DCP), and loading and decay rates were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p <.05). Vertical GRFs at heel contact increased and braking forces at the end of initial double limb stance reduced significantly when going from jogging shoe to roller shoe condition. Robbins and Waked (1997) reported that balance and vertical GRF are closely related It seems that the ankle and knee joints are locked in an awkward fashion at the heel contact to compensate for the imbalance. The DCP in the antero-posterior direction for the roller shoe condition was significantly less than the corresponding value for the jogging shoe condition. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the DCP for the roller shoe condition was restricted The results indicate that walking with roller shoes had little effect on temporal parameters, and loading and decay rates. It seems that there are differences in GRF characteristics between roller shoe and jogging shoe conditions. The differences in GRF pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine muscle activation patterns and joint kinematics during walking with roller shoes.

Effects of Transverse Cracks on Stress Distributions of Continuously Reinforced Concrete Tracks Subjected to Train Loads (연속철근 콘크리트궤도의 횡균열이 열차 하중에 의한 응력 분포에 미치는 영향)

  • Bae, Sung Geun;Choi, Seongcheol;Jang, Seung Yup;Cha, Soo Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.355-364
    • /
    • 2014
  • The restrained volume changes of concrete due to variations of temperature and moisture produce transverse cracks in continuously reinforced concrete tracks (CRCTs). Such cracks are known to significantly affect the behaviors and long-term performance of CRCT. To investigate the effects of the transverse cracks on the behavior of CRCT and to develop more reasonable maintenance standards for cracks, in this study, the stress distribution of the track concrete layers (TCL) and the hydraulically stabilized base course (HSB) with transverse cracks were numerically predicted by a three dimensional finite element analysis when CRCT was subjected to train loads. The results indicate that the bending stresses of TCL and vertical stresses at the interfaces between TCL and HSB increased as the cracks were deepened. In addition, vertical stresses were locally concentrated near reinforcing steel in cracks in TCL when full-depth cracks developed, which may lead to punch-outs in CRCTs. Comparably, the effects of crack width and spacing were not as significant as crack depth. This study indicates that ensuring the long-term performance of CRCTs requires adequate maintenance not only for crack width and spacing but also for crack depth. Our results also show that locating HSB joints between sleepers is beneficial to the long-term performance of CRCTs.

Kinematic Analysis of Back Somersault Pike According to Skill Level in Platform Diving

  • Park, Jiho;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.157-164
    • /
    • 2017
  • Objective: The purpose of this study was to investigate kinematic differences in back pike somersault in platform diving according to skill level and to apply the findings to improve performance. Method: Korean divers participating in this study were divided into a skilled group (age: $21.6{\pm}4.16y$, height: $1.68{\pm}0.03m$, weight: $62.0{\pm}3.94kg$, career: $12.6{\pm}5.13y$) and a less-skilled group (age: $20.6{\pm}2.7y$, height: $1.72{\pm}0.05m$, weight: $64.8{\pm}6.76kg$, career: $12.2{\pm}2.49y$) and an independent t-test was performed to analyze differences between groups at the moment of takeoff. Results: The two groups showed significant differences in displacement and velocity of center of mass (COM), takeoff angle, hip joint angle, knee joint angular velocity, and hip joint angular velocity at the takeoff (p<.05), and significant differences in displacement of COM, hip joint, and ankle joint during flight (p<.05). Conclusion: For a successful back pike, the COM should rise quickly in the vertical direction and the hip joint angle and angular velocity should increase. To improve performance, the back pike turn should be practiced on the ground before an attempt on a 10-m platform, to stretch the ankle and knee joints and enable quick flexion of the hip joint when turning in flight.

Evaluation of abutment types on highway in terms on driving comfort

  • Nam, Moon S.;Park, Min-Cheol;Do, Jong-Nam
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.43-61
    • /
    • 2017
  • The inverted T-type abutments are generally used in highway bridges constructed in Korea. This type of abutment is used because it has greater stability, with more pile foundations embedded in the bedrock, while simultaneously providing support for lateral earth pressure and vertical loads of superstructures. However, the cross section of inverted T-type abutments is large compared with the piers, which makes them more expensive. In addition, a differential settlement between the abutment and embankment, as well as the expansion joints, causes driving discomfort. This study evaluated the driving comfort of several types of abutments to improve driving comfort on the abutment. To achieve this objective, a traditional T-type abutment and three types of candidate abutments, namely, mechanically stabilized earth wall (MSEW) abutment supported by a shallow foundation (called "true MSEW abutment"), MSEW abutment supported by piles (called "mixed MSEW abutment"), and pile bent and integral abutment with MSEW (called "MIP abutment"), were selected to consider their design and economic feasibility. Finite element analysis was performed using the design section of the candidate abutments. Subsequently, the settlements of each candidate abutment, approach slabs, and paved surfaces of the bridges were reviewed. Finally, the driving comfort on each candidate abutment was evaluated using a vehicle dynamic simulation. The true MSEW abutment demonstrated the most excellent driving comfort. However, this abutment can cause problems with respect to serviceability and maintenance due to excessive settlements. After our overall review, we determined that the mixed MSEW and the MIP abutments are the most appropriate abutment types to improve driving comfort by taking the highway conditions in Korea into consideration.

A Study on Optimum Spacing of Rail Joint for Personal Rapid Transit(PRT) Track System (소형무인경전철 레일이음매의 적정 간격 산정 연구)

  • Choi, Jung-Youl;Kim, Pil-Soo;Chung, Jee Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.213-220
    • /
    • 2018
  • The objective of this study was to estimate the optimum spacing of rail joint for a personal rapid transit(PRT) track system, and to compare the results with the normal rail and rail joint by performing the finite element analysis(FEA) and field measurements using actual vehicles. Based on the FEA and field measurement results compared, the optimum spacing of the rail joints was calculated to be maximum of 1.20m based on the rail displacement. The vertical displacement of the normal rail was higher than that of the rail joint at a spacing of 1.0m, but it was considered that the vehicle riding performance and serviceability of track would be improved in terms of the stability of the train due to similar to rail defection between normal rail and rail joint. Also, because of the proposed rail joint spacing in this study was longer than the current rail joint spacing, the economic effect would be expected by decreasing the amount of sleepers.

Kinematic Analysis of Samdan Didimsae Movement for Jajinmori Jangdan (자진모리장단에 따른 한국무용3단 디딤새 동작에 관한 운동학적 분석)

  • Ahn, Wan-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.203-212
    • /
    • 2008
  • The purpose of this study is to propose appropriate model for 3 staged Didimsae movement to Jajinmori rhythm and to provide information for ideal foot step movements. For the locational change of body center, the height of body center is lowered at the moment of forward step and during forward intersection of the feet, forward direction linear motion is converted to vertical motion to maintain stability. Speed change of body center reduces flow of body on step forward moment and controls rapid forward movement for stabled movement and position when preventing fast forward horizontal direction movement of centroid speed while knee joint and foot joint are vertically risen for heel bone contacts the ground. For angle changes of joints, in order to prevent hyperextension of lower leg, hip joint is extended and knee joint is curved to secure stability of movement for smooth curves and extension. When centroid of foot joint is moved from top of the feet to whole foot sole and when left foot makes dorsal curve, stabled movement is accomplished.

Irregular Distribution of Lead in Groundwater in Door County, Wisconsin (위스컨신주 도어지역의 지하수내 납성분의 불규칙한 분포에 관한 연구)

  • 우남칠
    • The Journal of Engineering Geology
    • /
    • v.3 no.3
    • /
    • pp.241-252
    • /
    • 1993
  • Lead bas been found in the groundwater in Door County, Wiscorsin, with temporally and spatially irregular distribution in concentration. Correlation coeffidents were calculated among lead indicators in groundwater(frequency of lead detections, mean and maximum concentration of lead detections) and seven independent variables(stucture and geographic factors of wells, hydrogeological factors at lead-arsenate mixing sites and the level of soil contamination) which are possibly related to the lead level in groundwater. The significance of relationships was determined statistically by a t-test at the 90% confidence level, and indicated that the spatially located lead-arsenate mixing sites provided the lead in groundwater in the study area. A total of 112 groundwater samples were collected from 5 house wells with previous lead detects. Lead was detected in partides on ifiter papers with $0.45{\;}\mu\textrm{m}$ pore size, but not in filtrates. The result of chemical analysis for lead indicates that lead is associated with partides in groundwater in Door County. Subsequently, the irregular distribution of lead in the county results from the transport of particulate lead along the advective groundwater movement through the preferential pathways sucn as vertical and bedding-plane joints.

  • PDF

The study on the possibility of performance analysis for the compressive member using the numerical method (수치해석법을 활용한 압축부재 성능 해석의 가능성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.1
    • /
    • pp.26-39
    • /
    • 2010
  • This is a leading study to replace the structural analysis methodology on the specific traditional joint by a numerical analysis. Tests were carried out to test the compressive methodologies with the numerical results. The Japanese larch was used as a sample. The Orthotropic property of wood was specifically considered for the finite element numerical analysis. Linear numerical analysis and non-linear numerical analysis for the BEAM element and the two SOLID elements of ANSYS were used to analyze the compressive performance. In addition, more finely divided elements were used to raise the accuracy of the numerical result. Finally, the statistically significant differences were tested between that of the analytical and numerical results. It could be concluded that the SOLID 64 element shows the most optimum result when the non-linear analysis with the more finely divided element was used. However, finely dividing of the element is a considerable time consuming process, and it is quite difficult to raise the accuracy of the non-linear numerical analysis. Therefore, if considering the vertical displacement to be of the only interest, the BEAM element is more efficient than the SOLID element because the BEAM element is reflected as a simple line, which is less time consuming and difficult in dividing the elements. But, the BEAM element cannot accurately model the knot as a strength defect factor which is an important property in the orthotropic property of wood. Therefore, the SOLID element should be used to model the strength defect factor, knot, as it can be efficiently applied on the structural size flexure member which could be more strongly effected by the knot. In addition, it is useful at times when the failure types of members are to be more closely investigated, as the SOLID element is able to examine the local stress distribution of the member. The conclusion drawn by this study is of the good concordance between analytical results and numerical results of compressive wood members, but how orthotropic properties should only be considered. The numerical analysis on the specific Korean traditional joints will be based on the current study results.

  • PDF

The Effect of Asymmetric Muscle Force in the Lower Extremity on Dynamic Balance on during Drop Landing (하지근력의 좌우 비대칭성이 드롭랜딩 시 동적 안정성에 미치는 영향)

  • Kim, Chul-Ju;Lee, Kyung-Il;Hong, Wan-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.173-179
    • /
    • 2011
  • This study aims to analyse difference in biomechanical factors between dominant legs and recessive ones according to muscular imbalance during drop landing targeting talented children in sports. The subjects of the study were ten primary students who are attending to Sports Program for Talented Children organized by C university (age: $12.28{\pm}0.70$ year, height: $1.52{\pm}0.11$ m, and weight: $45.2{\pm}4.9$ kg). Strength legs were classified into dominant side and strengthless legs were classified into non-dominant legs. For three-dimensional analyses of the data collected, 6 video cameras(MotionMaster200, Visol, Korea) were used. To analyse ground reaction force, two force platforms(AMTI ORG-6, MA) were used and to analyse electromyograghy a 8-channeled wireless Noraxon Myoresearch made in USA was used at 1000 Hz for sampling. As a result, it was discovered that the dominants legs controlled knee bending motions more stably than strengthless legs as the maximum vertical ground reaction force was significantly high in dominant legs(p<.05), and joint moment of knee joints of the dominant legs was high(p<.05). Therefore, this study suggested that injury prevention program focusing on muscular balance as well as the existing sports programs for talented children should be developed based on results of the study and it is expected that the results will be useful for improvement of sports programs for talented children.

The Effect of Elastic Therapeutic Taping on Lower Limb Kinematics during a Cross Cutting Movement from Landing in Subjects with Chronic Ankle Instability (탄력 테이핑이 만성 발목 불안정 환자의 착지 후 방향 전환 시 하지 관절 움직임에 미치는 영향)

  • Jo, Tae-Seong;Kim, Tack-Hoon;Choi, Houng-Sik;Roh, Jung-Suk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • PURPOSE: This study investigated the effect that an elastic therapeutic taping treatment given to patients with chronic ankle instability had on the vertical ground reaction force, center of pressure, and range of motion in the ankle, knee and hip joints, during a Cross-cutting movement from landing. METHODS: This study analyzed 12 able-bodied adults and 12 patients with chronic ankle instability classified by using the Cumberland tool in the motion analysis laboratory, Hanseo University. The experiment was conducted under two conditions elastic taping and no treatment. In order to analyze the difference between the groups. An independent t-test was performed at p>.01. RESULTS: Plying an elastic therapeutic taping to the patients with chronic ankle instability significantly decreased the range of joint motion in the inversion of the ankle joint, the flexion of the knee joint, and the flexion and internal rotation of the hip joint during a cross-cutting movement from landing in comparison with the able-bodied adults p<.01. This restriction in the range of motion decreased the center-of-pressure trajectory length of patients with chronic ankle instability p>.01. CONCLUSION: An elastic therapeutic taping treatment given to patients with chronic ankle instability causes ankle stability to increase during a cross-cutting movement from landing.