• Title/Summary/Keyword: vertical frame

Search Result 449, Processing Time 0.029 seconds

Dynamic Analysis of I-Type Girder Bridge with HEMU Train Load (I형 거더교의 동력분산형 하중에 대한 동적해석)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1279-1286
    • /
    • 2010
  • This paper deals with the influence on the dynamic response of I-type girder railway bridge with high-speed electric multiple unit(HEMU) train load. This bridge system which has six I-girder and several cross beams, is modeled with plate and frame elements. And the upper slab is assumed to be fully connected with girders using rigid rinks. Span lengths, types of vehicle and running speeds are selected as parameters for analyses. For more exact analysis, it was adopted that 3-dimensional section of bridge models was produced by the assumed design wheel loads of HEMU vehicle at 200~350 km/hr speeds. Dynamic vertical deflections, dynamic amplification factors and vertical accelerations of bridges having 30 and 35 m span length were investigated and compared with the limit values specified in various national railway bridge specifications.

  • PDF

A Seismic Design of RC Underground Subway Structure (지중 RC 도시지하철고 구조물의 내진설계)

  • Jeong, Jae-Pyoung;Im, Tong-Won;Lee, Seong-Lo;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.357-362
    • /
    • 2000
  • This Paper presents dynamic analysis of underground R/C Subway Structure, subjected to seismic actions. Earthquakes brought serious damage to RC subway Structure. Foe studying the collapse mechanism of underground RC Subway, seismic of a subway station is simulated in using FEM program ASP2000 of two-dimension based on the path dependent RC elastic model, soil foundation and interfacial models. The shear failure of intermediate vertical columns is founds to be the major cause of the structural collapse. According to FEM simulation of the failure mechanism, it is considered that the RC column would lose axial load carrying capacity after the occurrence of the localized diagonal shear cracks , and sudden failure of the outer frame would be followed. Specially, the shear stress in the middle slab reaches maximum shear capacity. So, the Structure would fail in the middle slab as a result of erasing the vertical ground motion computation.

  • PDF

Effect of Torsional Eccentricity on the Seismic Response of High-Rise RC Bearing-Wall Structures with Vertical Irregularity (고층 RC 벽식 비정형 구조물의 지진반응에 대한 비틀림 편심의 효과)

  • 고동우;이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.145-150
    • /
    • 2003
  • The objective of this study is to investigate the effect of torsional eccentricity on the seismic response of high-rise RC bearing-wall structures with vertical irregularity. For this purpose, two 1:12 scale 17-story RC model structures, the one has concentric shear wall and the other has eccentric shear wall, were constructed and then subjected to a series of earthquake excitations. The test result shows the followings: 1) the layout of shear wall has the negligible effect on the natural period and the base shear coefficient, 2) the eccentric model behaves in the first and second mode while the concentric model has the first mode predominantly, 3) the stiff frame in the eccentric model resists most of overturning moment in the severe earthquake though both frames (the stiff and flexible frames) resist almost equally in the design earthquake.

  • PDF

Effect of stiffeners on failure analyses of optimally designed perforated steel beams

  • Erdal, Ferhat
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.183-201
    • /
    • 2016
  • Perforated steel beams can be optimised by increased beam depth and the moment of inertia combined with a reduced web thickness, favouring the use of original I-section beams. The designers are often confronted with situations where optimisation cannot be carried out effectively, taking account of the buckling risk at web posts, moment-shear transfers and local plastic deformations on the transverse holes of the openings. The purpose of this study is to suggest solutions for reducing these failure risks of tested optimal designed beams under applying loads in a self-reacting frame. The design method for the beams is the hunting search optimisation technique, and the design constraints are implemented from BS 5950 provisions. Therefore, I have aimed to explore the strengthening effects of reinforced openings with ring stiffeners, welded vertical simple plates on the web posts and horizontal plates around the openings on the ultimate load carrying capacities of optimally designed perforated steel beams. Test results have shown that compared to lateral stiffeners, ring and vertical stiffeners significantly increase the loadcarrying capacity of perforated steel beams.

MPEG-1 Video Scene Change Detection Using Horizontal and Vertical Blocks (수평과 수직 블록을 이용한 MPEG-1 비디오 장면전환 검출)

  • Lee, Min-Seop;An, Byeong-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2S
    • /
    • pp.629-637
    • /
    • 2000
  • The content-based information retrieval for a multimedia database uses feature information extracted from the compressed videos. This paper presents an effective method to detect scene changes from compressed videos. Scene changes are detected with DC values of DCT coefficients in MPEG-1 encoded video sequences. Instead of decoding full frames. partial macroblocks of each frame, horizontal and vertical macroblocks, are decoded to detect scene changes. This method detects abrupt scene changes by decoding minimal number of blocks and saves a lot of computation time. The performance of the proposed algorithm is analyzed based on the precision and the recall. The experimental results show the effectiveness in computation time and detection rate to detect scene changes of various MPEG-1 video streams.

  • PDF

Stiffness values and static analysis of flat plate structures

  • Unluoglu, Esref
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.427-437
    • /
    • 1998
  • Flat plate constructions are structural systems which are directly placed on columns without any beams. Various solution methods have been introduced for the solution of flat plate structures under horizontal and vertical loads. In most of these solution methods, models comprising of one column and one plate have been studied. In other solutions, however, co-behavior of two reciprocal columns has been investigated. In this study, interrelations of all the columns on one storey have been examined. At the end of the study structure consisting of nine columns and four plates has been chosen as a model. Then unit moment has been successively applied to each of these columns and unit moments carried over the other columns have been found. By working out solutions far plates and columns varying in ratio, carry-over factors have been found and these factors given in tables. In addition, fixed-end moment factors on the columns arising due to vertical load were also calculated. Then citing slope-deflection equations to which these results could be applied, some examples of moment and horizontal equilibrium equations have been given.

A Study on Seismic Performance for CFT Square Column-to-Beam Connections Reinforced with Asymmetric Lower Diaphragms (이형 하부다이아프램으로 보강된 각형 CFT 기둥-보 접합부의 내진성능에 관한 연구)

  • 최성모;윤여상;김요숙;김진호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.163-171
    • /
    • 2003
  • Most of existing beam-to-column connections are reinforced symmetrically because of reverse action cause by earthquake but in the weak-earthquake region like Korea connections reinforced asymmetrically can be used. Specially, the connections between CFT(Concrete Filled Tube) column and H-shape beam can be applied by simplified lower diaphragm. The tensile capacity of Combined Cross Diaphragm for upper reinforcing was tested by simple tension test and four types for lower reinforcing; Combined Cross, None, Horizontal T-bar and Vertical Plate were tested by ANSI/AISC SSPEC 2002 loading program. Horizontal T-bar and stud bolts in vertical flat bar transmit tensile stress from bottom flange of beam to filled concrete. All test specimens were satisfied 0.01 radian of inelastic rotational requirement in ordinary moment frame of AISC seismic provision. As the results of parametric studies, simplified lower diaphragms demonstrated an outstanding strength, stiffness and plastic deformation capacity to use sufficient seismic performance in the field.

  • PDF

Identification of Korea Traditional Color Harmony (비디오에서 프로젝션을 이용한 문자 인식)

  • Baek, Jeong-Uk;Shin, Seong-Yoon;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.196-197
    • /
    • 2009
  • In Video, key frame generated from the scene change detection is to perform character recognition through the projections. The separation between the text are separated by a vertical projection. Phoneme is separated Cho-sung, Jung-sung, and Jong-sung and is divided 6 types. Phoneme pattern is separated to suitable 6 types through the horizontal projection. Phoneme are separated horizontal, vertical, diagonal, reverse-diagonal direction. Phoneme is recognized using the 4-direction projection and location information.

  • PDF

Analysis and Small Scale Model Expriment on the Vertical Vibration of the KT-23 Type Passenger Vehicle (KT-23형 여객 차량의 상하 진동 해석 및 축소모형 실험)

  • 최경진;이동형;장동욱;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2003
  • The purpose of this study is to obtain the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type Passenger vehicle. According to the analysis and the small scale model car test. optimal condition was obtained for the stiffness ratio of secondary spring to primary spring of the suspension system and the mass ratio of the bogie frame to the car body. The analysis of the study shows that if the car body mass is increased or secondary stiffness Is lowered, the vertical vibration level is reduced and the passenger comfort can be improved. Especially, strong peaks are occurred in the frequencies corresponding to the rotational speed of driving axle and vehicle wheel. Hence, in order to obtain the dynamic characteristics through the small scale model car, the driving method of the vehicle on the test bench, rotational characteristics of the wheel and the natural modes of vehicle should be investigated and be modified.

Behavior of Single Pole Foundation using Experimental Study (실증시험을 통한 강관주기초의 거동특성)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.598-604
    • /
    • 2010
  • The drilled pier foundation is widely used to support transmission line structures due to its simplicity of construction. When this foundation type is used in conjunction with a single shaft or H-frame structure, it is subjected to a high overturning moment, combined with modest vertical and shear loads. Since the length and diameter of drilled piers are often governed by a maximum permissible deflection, many drilled piers being installed today are very conservatively designed. In this study, Nine prototype field-tests (1/8 scale) have been conducted in order to determine the vertical and lateral resistance of drilled pier foundation for single pole structures. These test results reveal the test piers behaved essentially as rigid bodies in soil (6D) and the center of rotation of the pier were typically 0.6~0.4 of the pier depth below ground surface. Test results also show the relationship between the applied load and the deflection at the top of the pier is highly nonlinear.

  • PDF