• Title/Summary/Keyword: vertical burning test

Search Result 19, Processing Time 0.028 seconds

Synthesis and Characterization of PU Flame-Retardant Coatings Using Tribromo Modified Polyesters (트리브로모 변성폴리에스테르를 함유한 PU 난연도료의 합성과 도막 특성화)

  • 박은경;양인모;김대원;황규현;박홍수
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.391-398
    • /
    • 2001
  • Two-component polyurethane (PU) flame-retardant coatings were prepared by blending tribromo modified polyesters ($TBAO_s$) and isocyanate.$TBAO_s$ were synthesized by condensation polymerization of tribromoacetic acid, a flame-retardant component, with 1,4-butanediol, adipic acid, and trimethylolpropane. The content of tribromoacetic acid was varied by 10, 20, and 30 wt% for the reaction. Various physical properties of these new flame-retardant coatings were comparable to nonflame-retardant coatings. Coatings with 20 wt% tribromoacetic acid did not burn during the vertical burning test.

  • PDF

A MULTI-STORY FIRE IN HIGH-RISE APARTMENT BUILDING DEVELOPED THROUGH BALCONIES - INVESTIGATION AND EXPERIMENTS -

  • Hasemi, Yuji;Hayashi, Yoshihiko;Hokugo, Akihiko;Yoshida, Masashi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.361-368
    • /
    • 1997
  • Summary of experiments for the investigation of a fire which caused an upward fire spread for over 12 floors through balconies in a high-rise apartment complex is reported. The experiments include indoor tests to obtain fire properties of vertical PMMA fences and outdoor ones with a full scale model of the balcony. The test results suggest significance of the increase of total flame height by the merging of flames and a cooperative effect of the burning of the PMMA fence and combustibles on the balconies for the generation of a tall flame enough to cause ignition on the upper floors.

  • PDF

A Study on the Properties of Flame Retardant and Fire Safety of Silicone Rubbers Added Reinforcing Fillers (보강성 충진제를 첨가한 실리콘 고무의 난연 및 화재안전 특성에 관한 연구)

  • Park, Seung Ho;Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.349-355
    • /
    • 2019
  • A fire, be it caused intentionally or unintentionally, leads to economic loss and physical damage, and requires digestion. The number of fires is increasing yearly, and electrical fires account for more than 30% among the main causes of fires. Electric wires that catch fire typically employ silicone coatings; silicone has organic as well as inorganic properties. Silicon is a natural, nonexistent, synthetic product with numerous applications. In this study, a silicon rubber for application in wires was prepared by high-temperature vulcanization (HTV) with a Shore A hardness of 70. We report results for the flame retardancy test and the fire safety characteristics via inorganic analysis. For this, a quartz inorganic material was added to the wire specimen, and 18% powdered extinguishing agent ammonium phosphate and expanded vermiculite respectively. Thus, expanded vermiculite showed the best flame retardancy and fire safety characteristics.

A Study on the Characterization of Intrinsic Flame Retardant and Heat Resistant Sulfur-Bridged Heterocyclic Polymers (본질적 난연 및 내열성 헤테로환식 폴리머의 특성에 관한 연구)

  • Young-Goo Kang;Hong Kim;Ho-Suk Ryu
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.173-178
    • /
    • 1997
  • The intrinsic flame retardant and heat resistant polymers such as PQXS [poly( quinoxaline )sulfide], PIQS [poly(isoquinoline)sulfide] and PQS [poly(quinoline)sulfide] were synthesized from 2, 3-dichloroquinoxaline, 1, 3-dichloroisoquinoline and 4, 7-dichloroquinoline. They were characterized by FT-IR, UV/Vis spectroscopy, DTA and elemental analysis. The melting point above $350^{\circ}C$ of the polymers show higher than that of the heat resistant PPS polymer(mp. $295^{\circ}C$), In the LOI test, the polymers exhibit an intrinsically high flame retardant property having the LOI values in the range of 41~42. The vertical burning test for the polymers also show an UL 94 V-0 performance.

  • PDF

A Study on the Preparation of Thermoplastic Powder Coating Material and Its Flame Retardancy (열가소성 분말 코팅소재 제조 및 난연특성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.45-52
    • /
    • 2010
  • The purpose of this study is application to flame retardant powder coating(FRPC) material consisting of ammonium polyphosphate(APP) and magnesium hydroxide($Mg(OH)_2$) as a halogen free flame retardant into thermoplastic resin(LDPE-g-MAH). For improvement of adhesion, LDPE-g-MAH was synthesized from low density polyethylene(LDPE) and maleic anhydride(MAH). The mechanical properties as melt flow index, pencil hardness, cross-hatch adhesion and impact resistance of FRPC were measured. Also, the limited oxygen index(LOI) values were measured 17.3vol%, 31.1vol% and 33.7vol% for LDPE-g-MAH, FRPC-3(APP 15wt%, $Mg(OH)_2$ 15wt%) and FRPC-5(APP 30 wt%), respectively. The thermo gravimetry/differential thermal analysis(TG/DTA) of FPRC-3 was observed endothermic peak at $340^{\circ}C$ and $450^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by APP and $Mg(OH)_2$. It was showed V-0 grade for FRPC-3 and FRPC-4(APP 20wt%, $Mg(OH)_2$ 10wt%) that a char formation and drip suppressing effect, and combustion time reduced by UL94(vertical burning test). It was confirmed that flame retardancy was improved with the synergy effect because of char formation by APP and $Mg(OH)_2$.

A Development and Performance Experiment on In-rack Sprinkler Head for Rack Type Warehouse (적층식 대형창고 스프링클러헤드 개발 및 성능실험)

  • Kim, Woon-Hyung;Lee, Jun;Hong, Seong-Ho;Kim, Jong-Hoon;Yang, So-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.214-222
    • /
    • 2019
  • Purpose: The purpose of this study is to develop a sprinkler head that can be controlled and initial suppressed by installing it in a rack-type warehouse. Method: Considering the spray radius and spray pattern, various deflectors were designed, and the spray angle, discharge characteristics and protection performance test was conducted, and these results were compared and analyzed. Results: An optimal sprinkler head was developed to protect full load, front side of a commodity with minimum water volume 115L/min. Conclusion: The developed head of K-115 and 1Bar pressure was tested with one tier storage confirming that the fire control is carried out without burning all the loadings. In addition, the vertical distance from the top of the load to the deflector shall be separated by 450mm and installed to allow sufficient discharge to the outer part of the commodity.

Preparation and Characterization of Polyurethane Flame-Retardant Coatings Containing Trichloro Lactone Modified Polyesters (트리클로로 락톤 변성폴리에스테르를 함유한 폴리우레탄 난연도료의 제조 및 난연특성)

  • 정충호;박형진;김성래;우종표;김명수
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.200-208
    • /
    • 2002
  • Two-component polyurethane flame-retardant coatings were prepared by blending trichloro lactone modified polyesters (TAPTS) and isocyanate, Desmodur IL. Polycondensation reaction of trichlorobenzoic acid (TBA) as a flame-retardant component, and adipic acid with trimethylolpropane, polycaprolactone 0201, and 1,4-butanediol gave the corresponding TAPTs. The content of TBA was adjusted from 10 to 30 wt% in our experiment. It was found that various properties of these new flame-retardant coatings were comparable to other non-flame-retardant coatings. We also carried out three different tests for the measurement of flammability of flame -retardant coatings. The results of vertical burning test for the coatings containing more than 20 wt% of TBA were determined as 'no burn'. The results of flammability test for the coatings with 20 and 30 wt% of TBA contents indicated the limiting oxygen index (LOI) values of 25% and 27% respectively, which implied relatively good flame retardancy. They also showed the char length of 3.6-5.2 cm according to $45^{\circ}$ Meckel burner test, which can be classified as the first grade flame-retardant coatings.

Flame-retarding effects depending on the number of phosphonate groups attached to phosphorus flame-retarding compounds and coating binder resins (인계 난연화합물 및 코팅 바인더 수지에 부착된 phosphonate group에 따른 난연효과)

  • Park, Hyo-Nam;Kim, Hae-Rim;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1678-1686
    • /
    • 2021
  • In this study, we prepared phosphorous flame-retarding coating solutions by mixing triphosphate (3 phosphonate), phytic acid (6 phosphonate), or ammonium polyphosphate (10 phosphonate) with boric acid as a crosslinking agent and acryl resin binder. Prepared phosphorous flame-retarding coating solutions were coated onto non-woven fabrics, respectively, to obtain high flame-retarding effects. These prepared flame-retardant non-woven fabrics were evaluated using smoke density standard test (ASTM E662), limit oxygen index standard test (ISO E622), and vertical burning standard test (UL 94). Their flame-retarding effects were affected by the number of phosphonate groups. Regardless of natural or synthetic binder resins, their effects showed the following order: ammonium polyphosphate > phytic acid > triphosphate. Natural hydrocarbon compounds were also examined to determine the possible retardancy of binder resins. Results showed that natural hydrocarbon binder resins could be used for preparing fire-retardant nonwoven fabrics.

Study on the Improvement of Flame Retardancy of Bamboo Fiber Using Eco-Friendly Liquid Flame Retardant (친환경 액상 난연제를 이용한 대나무섬유의 난연화 연구)

  • Dong-Woo, Lee;Maksym, Li;Jung-il, Song
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.456-462
    • /
    • 2022
  • Since natural fibers are highly flammable, it is not easy to make them flame retardant. In this study, a liquid flame retardant based on phytic acid, APTES, and Thiourea, which are flame retardant candidates derived from nature, was prepared and its performance was verified through flame retardant treatment and flame retardancy evaluation of bamboo fibers. When a liquid flame retardant is used, it is possible to treat a large amount of natural fibers with flame retardant treatment. Nine types of flame-retardant treated bamboo fibers were prepared according to the Taguchi design of experiment method. Thereafter, vertical burning test and microcalorimeter test were performed for flame retardancy evaluation, and the surface of natural fibers before and after flame-retardant treatment was compared using scanning electron microscope. The results show that phytic acid has a significant effect on improving the flame retardancy of natural fibers. Through microstructure analysis, it was assumed that the phytic acid helps flame retardant to uniformly adhere to the surface of natural fibers. If such research results are utilized, it is possible to make a large amount of natural fibers high flammability in an eco-friendly way, which is expected to be advantageous for the application of prototypes.