• Title/Summary/Keyword: vertical bearing behavior

Search Result 137, Processing Time 0.023 seconds

A Study on Increase of Bearing Capacity of Dense Sandy Ground installed by Vertical Micropiles (연직 마이크로파일이 설치된 조밀한 모레지반의 지지력 증가에 관한 연구)

  • 최상민;임종철;이태형;공영주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.355-362
    • /
    • 2001
  • Since micropiles were conceived in Italy in the early 1950s, which have been widely used for In-situ reinforcement, bearing pile or the concept of combination in the world-wide. The meaning of micropiles usually differs from that of a general deep foundation. Because the load capacity of it was mainly affected by skin friction. Also, it could be obtained the improvement effects of load capacity or ground's rigidity by the unitary behavior of ground and micropiles. In this study, The model tests were peformed on the dense sand where micropiles are set to the vertical direction. Strip footing was used in it. Steel bars of dia. 2 and 4㎜ were used in model tests of which the sand was attached on the surface, and the length of it was changed as 2B to 6B(where, B is width of strip footing) Through this process, the load capacity were analyzed from the test results in the relationship between load and displacement.

  • PDF

Behavior Characteristics of Batter Piles by Model Test (모형실험에 의한 경사말뚝의 거동 특성)

  • 권오균;이활;석정우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.59-66
    • /
    • 2004
  • In this study, the behavior characteristics of vertical and batter piles were analyzed by the model tests and the numerical analyses. Model steel pipe piles with the inclination of 0$^{\circ}$, 10$^{\circ}$, 20$^{\circ}$ and 30$^{\circ}$ were driven into sands with the relative density of 79%. The static compression load tests and numerical analyses using PENTAGON 3D were performed. The bearing capacities of batter piles with inclination of 10$^{\circ}$, 20$^{\circ}$ and 30$^{\circ}$ were 111, 95, and 81% of those of vertical pile in model tests, and the results of numerical analyses were similar to those of model tests. The bearing capacities p.oposed by Petrasovits and Award (1968) were similar to those of model test in the inclination of 10$^{\circ}$, but overestimated in the inclination of 20$^{\circ}$ and 30$^{\circ}$. The skin frictions and end bearing loads were the maximum in the inclination of 10$^{\circ}$ and decreased with increasing the inclination angle.

The Effect of Dynamic Behavior on Changing Pile Cap Size of Pile Group in Sandy Soil (사질토 지반에서 말뚝 캡 크기가 무리말뚝의 동적거동에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.8
    • /
    • pp.5-12
    • /
    • 2019
  • A pile group, that consists of several piles connected by a pile cap, is used as the superstructure. The pile supports vertical and horizontal load to design the pile group, but the effect of bearing capacity of the pile cap has not considered. Various researches have been conducted to reflect the effect of bearing capacity of the pile cap in order to reduce the amount of piles in the range of the stability under the vertical load of the superstructure. However, the effect of bearing capacity under the horizontal seismic load has not been studied adequately. Therefore, a shaking table test was carried out with different-sized pile caps that support the superstructure in this study. This test was to verify the influence of the size of the pile cap in the group pile under the horizontal load. The result shows that the size of the pile cap affects to the dynamic behavior of the superstructure and the pile group. Also, the bigger size of the pile group makes the larger constraint effect of ground, and it results that both the ground and the pile moves as a whole.

Evaluation of the Partial Compressive Strength according to the Wood Grain Direction

  • Park, Chun-Young;Kim, Hyung-Kun;Lee, Jun-Jae;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • Bearing occurs by the rotations of members induced from horizontal or vertical load at traditional wooden joint in frame. The bearing between wooden members is not occurring at the whole surface of joint, but occurring only at the particular bearing area. In this study, partial bearing according to the different grain direction was evaluated. The partial compressive strength showed 3 times higher than pure compressive strength perpendicular to grain, 1.5 times higher than parallel to grain and 3.3 times higher than both of them. It is expected that this result can be very importantly applied when evaluating and analyzing the actual behavior of traditional wooden mortise and tenon joint.

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

Pressure-settlement behavior of square and rectangular skirted footings resting on sand

  • Khatri, Vishwas Nandkishor;Debbarma, S.P.;Dutta, Rakesh Kumar;Mohanty, Bijayananda
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.689-705
    • /
    • 2017
  • The present study deals with the Pressure-settlement behavior of square and rectangular skirted footing resting on sand and subjected to a vertical load through a laboratory experimental study. A series of load tests were conducted in the model test tank to evaluate the improvement in pressure-settlement behavior and bearing capacity of square and rectangular model footings with and without structural skirt. The footing of width 5 cm and 6 cm and length/width ratio of 1 and 2 was used. The relative density of sand was maintained at 30%, 50%, 70%, and 87% respectively. The depth of skirt was varied from 0.25 B to 1.0 B. All the tests were carried out using a strain controlled loading frame of 50 kN capacity. The strain rate for all test was kept 0.24 mm/min. The results of present study reveal that, the use of structural skirt improves the bearing capacity of footing significantly. The improvement in bearing capacity was observed almost linearly proportional to the depth of skirt. The improvement in bearing capacity of skirted footings over footing without skirt was observed in the range of 33.3% to 68.5%, 68.9% to 127% and 146.7% to 262% for a skirt depth of 0.25 B, 0.50 B and 1.0 B respectively. The skirted footings were found more effective for sand at relative density of 30% and 50% than at relative density of 70% and 87%. The bearing capacity was found to increase linearly with footing width for footings with and without skirts. This observation was found to be consistent for footings with different skirt depths and for relative density of sand i.e., 30%, 50%, 70%, and 87%. The obtained results from the study for footing with and without skirts were comparable with available solutions from literature.

The Effect of Gaps in Concrete Bearing Surface of Direct Fixation Track on Vehicle and Track Interaction (직결궤도 체결구 하부에 발생한 단차가 차량/궤도 상호작용에 미치는 영향)

  • Yang, Sin-Chu;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.50-57
    • /
    • 2010
  • Various installation faults may lie in fasteners in the construction of a direct-fixation track by the top-down method. At an extreme, they may cause excessive interaction between the train and track, compromise the running safety of the train, and cause damage to the track components. Therefore, the faults need to be kept within the allowable level through an investigation of their effects on the interactions between the train and track. In this study, the vertical dynamic stiffness of fasteners in installation faults was measured based on the dynamic stiffness test by means of an experimental apparatus that was devised to feasibly reproduce gap faults. This study proposes an effective analytical model for a train-track interaction system in which most elements, except the nonlinear wheel-rail contact and some components that behave bi-linearly, exhibit linear behavior. To investigate the effect of the behavior of fasteners in gap faults in a direct-fixation track on the vehicle and track, vehicle-track interaction analyses were carried out, targeting key review parameters such as the wheel load reduction factor, vertical rail displacement, rail bending stress, and mean stress of the elastomer. From the results, it was noted that the gap faults in the concrete bearing surface of a direct-fixation track need to be limited for the sake of the long-term durability of the elastomer than for the running safety of the train or the structural safety of the track.

  • PDF

Axially-compressed behavior of CFRP strengthening steel short columns having defects

  • Omid Yousefi;Amin Shabani Ammari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.49-61
    • /
    • 2024
  • In recent decades, the majority of studies have concentrated on the utilization of Steel Square Hollow Section (SHS) columns, with minimal attention given to reinforcing columns exhibiting inherent defects. This study addresses this gap by introducing initial vertical and horizontal defects at three distinct locations (top, middle, and bottom) and employing Carbon-FRP for reinforcement. The research investigates the dimensional and positional impacts of these defects on the axial behavior of SHS columns. A total of 29 samples, comprising 17 with defects, 11 strengthened, and 1 defect-free control, underwent examination. The study employed ABAQUS modeling and conducted experimental testing. Results revealed that defects located at different positions significantly diminished the load-bearing capacity and initial performance of the steel columns. Axial loading induced local buckling and lateral rupture, particularly at the defect side, in short columns. Notably, horizontal (across the column's width) and vertical (along the column's height) defects in the middle led to the most substantial reduction in strength and load-bearing capacity. The axial compressive failure increased with the length-to-width ratio of the defect. Moreover, the application of four carbon fiber layers to strengthen the steel columns resulted in increased Energy Dissipation and a delayed onset of local buckling in the face of axial ruptures.

Experimental Study on Low Cyclic Loading Tests of Steel Plate Shear Walls with Multilayer Slits

  • Lu, Jinyu;Yu, Shunji;Qiao, Xudong;Li, Na
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1210-1218
    • /
    • 2018
  • A new type of earthquake-resisting element that consists of a steel plate shear wall with slits is introduced. The infill steel plate is divided into a series of vertical flexural links with vertical links. The steel plate shear walls absorb energy by means of in-plane bending deformation of the flexural links and the energy dissipation capacity of the plastic hinges formed at both ends of the flexural links when under lateral loads. In this paper, finite element analysis and experimental studies at low cyclic loadings were conducted on specimens with steel plate shear walls with multilayer slits. The effects caused by varied slit pattern in terms of slit design parameters on lateral stiffness, ultimate bearing capacity and hysteretic behavior of the shear walls were analyzed. Results showed that the failure mode of steel plate shear walls with a single-layer slit was more likely to be out-of-plane buckling of the flexural links. As a result, the lateral stiffness and the ultimate bearing capacity were relatively lower when the precondition of the total height of the vertical slits remained the same. Differently, the failure mode of steel plate shear walls with multilayer slits was prone to global buckling of the infill steel plates; more obvious tensile fields provided evidence to the fact of higher lateral stiffness and excellent ultimate bearing capacity. It was also concluded that multilayer specimens exhibited better energy dissipation capacity compared with single-layer plate shear walls.

Seismic progressive collapse mitigation of buildings using cylindrical friction damper

  • Mirtaheri, Masoud;Omidi, Zobeydeh;Salkhordeh, Mojtaba;Mirzaeefard, Hamid
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The occurrence of progressive collapse induced by the removal of the vertical load-bearing element in the structure, because of fire or earthquake, has been a significant challenge between structural engineers. Progressive collapse is defined as the complete failure or failure of a part of the structure, initiating with a local rupture in a part of the building and can threaten the stability of the structure. In the current study, the behavior of the structures equipped with a cylindrical friction damper, when the vertical load-bearing elements are eliminated, is considered in two cases: 1-The load-bearing element is removed under the gravity load, and 2-The load-bearing element is removed due to the earthquake lateral forces. In order to obtain a generalized result in the seismic case, 22 pair motions presented in FEMA p 695 are applied to the structures. The study has been conducted using the vertical push down analysis for the case (1), and the nonlinear time-history analysis for the second case using OpenSEES software for 5,10, and 15-story steel frames. Results indicate that, in the first case, the load coefficient, and accordingly the strength of the structure equipped with cylindrical friction dampers are increased considerably. Furthermore, the results from the second case demonstrate that the displacements, and consequently the forces imposed to the structure in the buildings equipped with the cylindrical friction damper substantially was reduced. An optimum slip load is defined in the friction dampers, which permits the damper to start its frictional damping from this threshold load. Therefore, the optimum slip load of the damper is calculated and discussed for both cases.