• Title/Summary/Keyword: vertical bearing behavior

Search Result 137, Processing Time 0.019 seconds

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

An Experimental Study on Optimum Slanting Angle in Reticulated Root Piles Installation (그물식 뿌리말뚝의 최적 타설경사각에 관한 실험 연구)

  • 이승현;김병일
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 1995
  • Load testis are executed on model reticulated root piles (RRP) to figure out the optimum slanting angle in the piles installation. One set of model RRP consists of 8 slanting piles which are installed in circular patterns forming two concentric circles, each of which is made by 4 piles. Each pile which is a steel bar of 5m in diameter and 300mm in length is coated to become a pile of 6.5mm in diameter. The slanting angle of the model RRP varies from 0$^{\circ}$ to 20$^{\circ}$ Comparing ultimate bearing capacities of the model RRP of different installation angles, it is observed that the ultimate capacities of the RRP increase as the installation angle increases until 15$^{\circ}$, and the optimum slanting angle of the RRP is around 15$^{\circ}$ The ultimate bearing capacity of the 15$^{\circ}$-RRP is found to be 22% bigger than that of the vertical RRP and 120% bigger than that of the circular surface footing whose diameter is same with the circle formed by outer root piles'heads. However, it is noticed that when the slanting angle of the RRP is increased over 15$^{\circ}$, the ultimate capacity starts to be reduced. The ultimate capacity of 20$^{\circ}$-RRP is even smaller than that of the vertical RRP by as much as 5%. From the observation of the load settlement curve obtained during the RRP load tests, it is known that as the slanting angle gets bigger the load -settlement behavior becomes more ductile.

  • PDF

Experimental Study on Loading Capacity of SY Corrugated Steel Form for RC Beam and Girder (SY 비탈형 보거푸집의 내하성능에 관한 실험적 연구)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Hwhang, Yoon-Koog;Shin, Sang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.32-39
    • /
    • 2021
  • Recently, necessities of steel form for reinforced concrete beam and girder have been emphasized in building structures for the reduction of the construction period and the labor cost. SY Beam was developed for the these purposes and is roll-formed using thin steel plate. On this research, we tried to evaluate and verify the performance and behavior of SY Beam under construction loading stage as like pouring in situ concrete. For the standard shape of SY beam, structural modelling with various steel thicknesses has carried out using MIDAS GEN program. From results of modelling, the width and height of SY Beam were determined 600mm and 400mm respectively. For 3 SY Beams, the loading experiment was performed to measure vertical and horizontal displacement under stacking sand, concrete block, and bundle of rebar. As a result, the vertical deflection showed a tendency to decrease as the thickness increased. In the horizontal displacement, the trend according to the thickness was not clearly observed. From the evaluation on the loading experiment, it is considered that the SY Beam can secure both workability and structural safety. In particular, the SY Beam(1.2mm) hardly generates horizontal displacement, so it has excellent load-bearing capacity. So, we judged that the SY Beam with 1.2mm steel plate has excellent performance and consider to be immediately commercially available.

An Experimental Study on the Shear Behavior of Reinforced Concrete Deep Beams Subject to Concentrated Loads (집중하중을 받는 철근콘크리트 깊은 보의 전단거동에 관한 실험적 연구)

  • Lee, Jin-Seop;Kim, Sang-Sik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.191-200
    • /
    • 1999
  • The shear behavior of simply supported reinforced concrete deep beams subject to concentrated loads has been scrutinized experimentally to verify the influence of the structural parameters such as concrete strength, shear span-depth ratio, and web reinforcements. A total of 42 reinforced concrete deep beams with compressive strengths of 250 kg/$cm^2$ and 500 kg/$cm^2$ has been tested at the laboratory under one or two-point top loading. The shear span-depth ratio have been taken as three types of 0.4, 0.8 and 1.2, and the horizontal and vertical shear reinforcements ratio, ranging from 0.0 to 0.57 percent respectively. In the tests, the effects of the shear span-depth ratio, concrete strength and web reinforcements on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear and the shear behaviors of specimens were greatly affected by inclined cracks from the load application points to the supports in shear span. The load bearing capacities have changed significantly depending on the shear span ratio, and the efficiency of horizontal shear reinforcements were increased as the shear span-depth ratio decreased. The test results have been analyzed and compared with the formulas proposed by previous researchers and the design equation from the code. While the shear strengths obtained from the tests showed around 1.4 and 1.9 times higher than the values calculated by CIRIA guide and the domestic code, they were closely coincident with the formulas given by de Paiva's equation.

Evaluation of Uplift Forces Acting on Fastening Systems at the Bridge Deck End Considering Nonlinear Behaviors of the Fastening Systems (체결장치 비선형 거동을 고려한 교량 단부에서의 체결장치 압상력 평가)

  • Yang, Sin Chu;Kim, Hak Hyung;Kong, Jung Sik
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.521-528
    • /
    • 2017
  • In this study, vertical loading tests were conducted to investigate the nonlinear behaviors of the fastening systems that have generally been used in the concrete track of domestic railway lines. Nonlinear load-displacement curve models were derived based on the test results. The uplift forces generated in the fastening systems were evaluated by applying the derived nonlinear models as well as the existing linear models. The influence of the factors on the maximum uplift force of the fastening system was analyzed through a parameter study on the distance between neighboring sleepers, the horizontal distance between the center of the bearing and the nearest fastening system from the deck end, and the height of the bridge girder. From the evaluation results it is known that, for economical track and bridge design, due to deck end deformation, it is necessary to consider the nonlinear behavior of the fastening system in the calculation of the uplift force of the fastening systems.

The Ultimate Bearing Capacity and Estimation Method of Rigid Pile for Port Structures under Lateral Load (횡하중이 작용하는 항만구조물에서 짧은말뚝의 극한지지력 및 평가방법)

  • Kim, Byung-Il;Han, Sang-Jae;Kim, Jong-Seok;Kim, Do-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.75-91
    • /
    • 2014
  • In this study the analysis is performed for influencing factors on the behavior of rigid piles (short pile) by research papers and case study. The results indicated that the point of virtual fixity should be calculated considering the relative stiffness of soil and pile, and Chang (1937) and P-Y method estimated the similar fixity. The values of ultimate resistances of a vertical pile to a lateral load are different for laboratory and field tests in cohesive soils and its ultimate values in laboratory tests are underestimated and in field tests are under or overestimated. The estimated resistance by Hansen (1961)'s method is similar to the value of field tests. The horizontal resistances to laterally loaded pile in cohesionless soils are overestimated in laboratory tests and generally overestimated in field tests. The ultimate resistances by Zhang (2005)'s method, used to the empirical distribution of the resistance, are similar to the test results. In the paper the calculating method and distribution of the ultimate resistance in cohesive soils are proposed. The estimated value by the proposed method is closer to the test results than any other method of calculating ultimate resistance of the piles embedded into cohesive soils.

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF