• 제목/요약/키워드: vertical and torsional irregularities

검색결과 4건 처리시간 0.012초

수직비정형과 비틀림비정형을 동시에 가지는 저층 RC 건물의 내진성능에 관한 연구 (Study on the Seismic Performance for Low-rised RC Building with Vertical and Torsional Irregularities)

  • 최인혁;백은림;이상호
    • 대한건축학회논문집:구조계
    • /
    • 제35권12호
    • /
    • pp.137-148
    • /
    • 2019
  • Korean piloti-type buildings are comprised of pilotis in the first story and shear walls in the upper stories. This vertical irregularity causes excessive lateral plastic deformation on the first story while the upper stories stay elastic. Meanwhile, asymmetric position of structural components such as core walls and columns of RC piloti-type buildings tends to produce torsional irregularities of the structures. Korean Building Code(KBC2016) requires the special seismic load and torsional amplification factor to apply to the piloti-type buildings lower than six-story or 20m if it has vertical and torsional irregularities when the building corresponds to seismic design category C or D. Many Korean low-rised RC buildings fall into the class. Therefore, the special earthquake load and torsional amplification factor are often applied to a building simultaneously. However, it has not been studied enough how much influence each parameter has on buildings with vertical and torsional irregularities at the same time. The purpose of this study is to evaluate the effect of factor special seismic load and torsional amplification on seismic performance of irregular buildings. In this study, a damaged 4th story piloti-type building by the Pohang earthquake was selected and the earthquake response analysis was carried out with various seismic design methods by the KBC 2016. The effect of the design parameters on seismic performance was analyzed by the dynamic analysis of models with special seismic load and torsional amplification factor based on the selected building. It was concluded that the application of the torsional amplification factor to the reference model to which special seismic design was applied, does not significantly affect the seismic performance.

A novel approach for the definition and detection of structural irregularity in reinforced concrete buildings

  • S.P. Akshara;M. Abdul Akbar;T.M. Madhavan Pillai;Renil Sabhadiya;Rakesh Pasunuti
    • Structural Monitoring and Maintenance
    • /
    • 제11권2호
    • /
    • pp.101-126
    • /
    • 2024
  • To avoid irregularities in buildings, design codes worldwide have introduced detailed guidelines for their check and rectification. However, the criteria used to define and identify each of the plan and vertical irregularities are specific and may vary between codes of different countries, thus making their implementation difficult. This short communication paper proposes a novel approach for quantifying different types of structural irregularities using a common parameter named as unified identification factor, which is exclusively defined for the columns based on their axial loads and tributary areas. The calculation of the identification factor is demonstrated through the analysis of rectangular and circular reinforced concrete models using ETABS v18.0.2, which are further modified to generate plan irregular (torsional irregularity, cut-out in floor slab and non-parallel lateral force system) and vertical irregular (mass irregularity, vertical geometric irregularity and floating columns) models. The identification factor is calculated for all the columns of a building and the range within which the value lies is identified. The results indicate that the range will be very wide for an irregular building when compared to that with a regular configuration, thus implying a strong correlation of the identification factor with the structural irregularity. Further, the identification factor is compared for different columns within a floor and between floors for each building model. The findings suggest that the value will be abnormally high or low for a column in the vicinity of an irregularity. The proposed factor could thus be used in the preliminary structural design phase, so as to eliminate the complications that might arise due to the geometry of the structure when subjected to lateral loads. The unified approach could also be incorporated in future revisions of codes, as a replacement for the numerous criteria currently used for classifying different types of irregularities.

지진하중이 작용하는 RC 필로티 건축물의 동적해석 (Dynamic Analysis of RC Piloti-Type Building Subjected to Earthquake Loads)

  • 김주원
    • 한국전산구조공학회논문집
    • /
    • 제34권3호
    • /
    • pp.121-128
    • /
    • 2021
  • 본 연구에서는 비틀림비정형성과 수직비정형성을 가진 RC 필로티 건축물의 지진동에 대한 거동을 층강성을 적용하여 간단하게 모델링하는 선형 동적해석 프로그램을 개발하고자 한다. 개발된 동적 해석 프로그램을 적용하여 필로티 건축물의 동적 거동 및 필로티층 각 기둥의 전단력을 분석하고, 필로티층에 전단벽 또는 가새를 보강하였을 때 보강효과를 평가하고자 한다. 모서리코어가 있는 필로티 건축물에서 필로티층의 코어 반대편 모서리를 전단벽이나 K형 가새로 보강하였을 때 변위와 기둥 전단력이 크게 감소하는 것으로 나타났으며, 모서리 양면을 K형 가새로 보강하는 것보다 한 면을 전단벽으로 보강하는 것이 보강효과가 큰 것으로 나타났다.

격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가 (An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns)

  • 문홍비;노경민;이영학
    • 한국공간구조학회논문집
    • /
    • 제22권2호
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.