• Title/Summary/Keyword: vertical acceleration

Search Result 476, Processing Time 0.035 seconds

Reliability-based assessment of high-speed railway subgrade defect

  • Feng, Qingsong;Sun, Kui;Chen, Hua-peng
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.231-243
    • /
    • 2021
  • In this paper, a dynamic response mapping model of the wheel-rail system is established by using the support vector regression (SVR) method, and the hierarchical safety thresholds of the subgrade void are proposed based on the reliability theory. Firstly, the vehicle-track coupling dynamic model considering the subgrade void is constructed. Secondly, the subgrade void area, the subgrade compaction index K30 and the fastener stiffness are selected as random variables, and the mapping model between these three random parameters and the dynamic response of the wheel-rail system is built by using the orthogonal test and the SVR. The sensitivity analysis is carried out by the range analysis method. Finally, the hierarchical safety thresholds for the subgrade void are proposed. The results show that the subgrade void has the most significant influence on the carbody vertical acceleration, the rail vertical displacement, the vertical displacement and the slab tensile stress. From the range analysis, the subgrade void area has the largest effect on the dynamic response of the wheel-rail system, followed by the fastener stiffness and the subgrade compaction index K30. The recommended safety thresholds for the subgrade void of level I, II and III are 4.01㎡, 6.81㎡ and 9.79㎡, respectively.

Seismic response of non-structural components attached to reinforced concrete structures with different eccentricity ratios

  • Aldeka, Ayad B.;Dirar, Samir;Chan, Andrew H.C.;Martinez-Vazquez, Pedro
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1069-1089
    • /
    • 2015
  • This paper presents average numerical results of 2128 nonlinear dynamic finite element (FE) analyses of lightweight acceleration-sensitive non-structural components (NSCs) attached to the floors of one-bay three-storey reinforced concrete (RC) primary structures (P-structures) with different eccentricity ratios. The investigated parameters include the NSC to P-structure vibration period ratio, peak ground acceleration, P-structure eccentricity ratio, and NSC damping ratio. Appropriate constitutive relationships were used to model the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the vibration periods of the P-structures. Full dynamic interaction was considered between the NSCs and P-structures. A set of seven natural bi-directional ground motions were used to evaluate the seismic response of the NSCs. The numerical results show that the acceleration response of the NSCs depends on the investigated parameters. The accelerations of the NSCs attached to the flexible sides of the P-structures increased with the increase in peak ground acceleration and P-structure eccentricity ratio but decreased with the increase in NSC damping ratio. Comparison between the FE results and Eurocode 8 (EC8) predictions suggests that, under tuned conditions, EC8 provisions underestimate the seismic response of the NSCs mounted on the flexible sides of the plan-irregular RC P-structures.

A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea (우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석)

  • Kim, Jung Han;Kim, Jae Kwan;Heo, Tae Min;Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.

Analysis of the acceleration measured on Korea and France high speed railways using UIC518 code (UIC518 방법에 의한 국내 및 프랑스 고속철도 차량 진동가속도 분석)

  • Choi, Il-Yoon;Kim, Nam Po;Lee, Jun S;Lim, Jihoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8516-8524
    • /
    • 2015
  • Track irregularities can be evaluated not only directly by track inspection but also indirectly by measurement of carbody accelerations and many researches are being conducted. Carbody accelerations were measured on the Kyeongbu high speed railway and France high speed line to investigate the situation of the track maintenance at Korea high speed line by using indirect method. Digital signal processing for the measured acceleration data were conducted according to UIC518 code. Since the vehicle speed affects the car body acceleration, the lateral and vertical acceleration of the car body were classified according to the vehicle speed and the distribution characteristics of these acceleration were investigated and evaluated by UIC518 criteria. Finally, the running behavior of KTX on Korea high speed railway were compared with that on France. Distribution characteristics of these acceleration were evaluated and discussed in terms of the track maintenance in Korea high speed line.

Evaluation method of motion seasickness by ship motions during underway in irregular waves (선박운항 중 선체동요에 의한 뱃멀미 평가방법)

  • Choi, Chan-Moon;Lee, Chang-Heon;Kim, Byung-Yeob;Ahn, Jang-Young;Kim, Seok-Jong;Shigehiro, Ritsuo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.71-78
    • /
    • 2015
  • In order to deduce an objective evaluation method of motion seasickness incidence (MSI) by ship motions during underway in irregular waves and to present the fundamental data of passenger comfort on the yacht and the passenger ship according to the result, the MSI of the trainees by the questionnaires was analysed and compared with the rate of variation of salivary ${\alpha}$-amylase activity (VSAA) on the training ship "A-ra ho" of Jeju national university. Relationship between rate of variation (x) by salivary ${\alpha}$-amylase activity and motion seasickness incidence (y) was described by the equation, MSI(%) = 0.6073 x + 12.189 including the correlation coefficient ($R^2=0.9853$). The result obtained through the rate of variation of salivary ${\alpha}$-amylase activity which was the quantitative evaluation method for ship motions causing seasickness was most affected by z-vertical acceleration and occurred within the frequency range 0.1 to 0.3Hz centered on 0.2Hz, and the simulation result based on this finding showed the motion seasickness rate at approximately 4% lower than the rate obtained through the survey.

Analysis of Marine Accidents appling the Seakeeping Performance Technology (선박의 내항성능평가기술에 의한 사고원인 분석)

  • Kong, Gil-Young;Kim, Soon-Kap;Kim, Young-Du;Jung, Chang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.413-414
    • /
    • 2010
  • For the purpose of technological analysis in the marine accidents and their prevention, IMO have made it obligatory to load VDR which is similar to the black box in aircraft. However, in case of body sinkage, capsizing, stranding and plunging which are almost 10% of marine accidents, it is difficult to take out the necessary data from the VDR in order to analyze the cause of them. Therefore, this paper apply the navigation dangerousness evaluation technology to the VDR to improve its performance. And we suggest that the vertical acceleration which is one of the factors for evaluating seakeeping performance of a ship is to be added in the existing VDR record data recommended by IMQ.

  • PDF

An Experimental Study on Brake Judder via the Frequency Analysis of the Brake System and Vehicle System of a Commercial Vehicle (상용차량의 브레이크 시스템과 차량 시스템 주파수 분석을 통한 브레이크 저더의 실험적 고찰)

  • Moon, ll-Dong;Kim, Jong-Dae;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1131-1138
    • /
    • 2007
  • This paper studies experimentally on the building-up process for the amplitude of a commercial truck vibration induced by brake judder. A front axle drum equipped with a drum brake system is utilized for this experiment. A brake dynamo test, a real vehicle ride test and a real vehicle braking test are performed for the analysis of brake judder. The brake dynamo test measures judder by applying brake chamber pressures of 1, 2 and 3 bar at initial brake pad temperatures of $100^{\circ}C$ and $150^{\circ}C$. In order to assess the vertical acceleration at the front axle, the real vehicle ride test on a straight test road with velocities of 20, 40, 60 and 80 km/h is performed. The real vehicle braking test is carried out at the deceleration rate of 0.2g from a velocity of 90km/h for evaluating the vertical, lateral and longitudinal accelerations both at the front axle and at the cab floor under the driver's seat. The magnitudes and frequencies of the measured peak accelerations from the brake dynamo test, the real vehicle ride test and the real vehicle braking test are comparatively analyzed. This paper shows that the vibration produced by brake judder is built up due to the brake system's peak acceleration frequency being close to the vehicle ride mode's frequency.

Train-Structure Dynamic Interaction Analysis of The Bridge Transition Considering Track Irregularity (궤도틀림을 고려한 교대접속부의 열차상호동적거동해석)

  • Choi, Chan-Yong;Kim, Hun-Ki;Chung, Keun-Young;Yang, Sang-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, track dynamic interaction characteristics caused by the vehicle running through transitional section such as bridge abutments were studied using the finite element analysis program. The geometric condition of track was generated by trigonometric function and allowable maximum track irregularity is determined by KORAIL track maintenance criteria. The sub-infrastructure under rail fastener system was modelled by 3D solid elements. To reduce computational cost only half track line is numerically considered and the roller boundary condition was applied to each side of model. In this study, the vehicle-track dynamic interaction analysis was carried out for standard Korean transition section of concrete track and the dynamic behaviors were investigated. The dynamic characteristics considered are wheel load variation, vertical acceleration at body, and maximum Mises stress at each part of transitional section.

A Study on the Estimation of the Ride Quality of a Large-Sized Truck Using a Computer Model (컴퓨터 모델을 이용한 대형트럭의 승차성능 평가에 관한 연구)

  • Mun, Il-Dong;O, Jae-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2048-2055
    • /
    • 2001
  • This paper develops a computational model for estimating the ride quality of a cabover type large-sized truck in a double wheel bumpy ride test. The computational model is developed using ADAMS. To verify the developed model, an actual vehicle double wheel bumpy ride test is performed. In the test, the vehicle maintains a straight course with a constant velocity such that the front two wheels are passed the bump at the same time. The bump has the height of 60mm, and the width of 550mm. In the test, four velocities are used. They are 10kph, 20kph, 30kph and 40kph. Since the large-sized truck's center of gravity location is high, and its weight is heavy, it is a quite severe test condition to perform the test with more than 30kph velocity. In the test, vertical accelerations on the floor of the cab are measured. The measured accelerations are compared to the simulation results. From the comparison, it is shown that the developed model can predict not only the measured acceleration's tendency but also peak accelerations quite well. In this paper, the validated model is utilized to compare the ride quality between a vehicle with a multi-leaf spring and a vehicle with a tapered leaf spring in the front suspension system in a double bumpy ride test.

The Effect of Increased Running Speed on the Magnitude of Impact Shock Attenuation during Ground Contact (착지 시 달리기 속도 증가가 충격 쇼크 흡수에 미치는 영향)

  • Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.197-204
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of increased running speed on the magnitude of impact shock attenuation in high frequency (9~20 Hz) at support phase on the treadmill running. Method: Twenty-four healthy male heel-toe runners participated in this study. Average age, height, mass, and preference running speed were 23.43±3.78 years, 176.44±3.38 cm, 71.05±9.04 kg, and 3.0±0.5 m/s, respectively. Three triaxial accelerometer (Noraxon, USA) were mounted to the tuberosity of tibia, PSIS (postero-superior iliac spine), and forehead to collect acceleration signals, respectively. Accelerations were collected for 20 strides at 1,000 Hz during treadmill (Bertec, USA) running at speed of 2.5, 3.0, 3.5, and 4.0 m/s. Power Spectrum Density (PSD) of three acceleration signals was calculated to use in transfer function describing the gain and attenuation of impact shock between the tibia and PSIS, and forehead. One-way ANOVA were performed to compare magnitude of shock attenuation between and within running speeds. The alpha level for all statistical tests was .05. Results: No significant differences resulted for magnitude of the vertical and resultant impact shock attenuation between the tibia and PSIS, and forehead between running speeds. However, significant differences within running speed were found in magnitude of the vertical shock attenuation between tibia and PSIS, tibia and forehead at speed of 2.5, 3.0 m/s, respectively. Conclusion: In conclusion, it might be conjectured that muscles covering the knee and ankle joints and shoe's heel pad need to strengthen to keep the lower extremities from injuries by impact shock at relatively fast running speed that faster than preferred running speed.