• Title/Summary/Keyword: vertical acceleration

Search Result 473, Processing Time 0.025 seconds

The effects of vertical earthquake motion on an R/C structure

  • Bas, Selcuk;Kalkan, Ilker
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.719-737
    • /
    • 2016
  • The present study investigated the earthquake behavior of R/C structures considering the vertical earthquake motion with the help of a comparative study. For this aim, the linear time-history analyses of a high-rise R/C structure designed according to TSC-2007 requirements were conducted including and excluding the vertical earthquake motion. Earthquake records used in the analyses were selected based on the ratio of vertical peak acceleration to horizontal peak acceleration (V/H). The frequency-domain analyses of the earthquake records were also performed to compare the dominant frequency of the records with that of the structure. Based on the results obtained from the time-history analyses under the earthquake loading with (H+V) and without the vertical earthquake motion (H), the value of the overturning moment and the top-story vertical displacement were found to relatively increase when considering the vertical earthquake motion. The base shear force was also affected by this motion; however, its increase was lower compared to the overturning moment and the top-story vertical displacement. The other two parameters, the top-story lateral displacement and the top-story rotation angle, barely changed under H and H+V loading cases. Modal damping ratios and their variations in horizontal and vertical directions were also estimated using response acceleration records. No significant change in the horizontal damping ratio was observed whereas the vertical modal damping ratio noticeably increased under H+V loading. The results obtained from this study indicate that the desired structural earthquake performance cannot be provided under H+V loading due to the excessive increase in the overturning moment, and that the vertical damping ratio should be estimated considering the vertical earthquake motion.

Estimation of critical speed and running performance for swing motion bogie of railway freight car (화물수송용 스윙모션보기의 임계속도와 주행성능 평가)

  • 함영삼;오택열
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.215-220
    • /
    • 2003
  • In this paper the dynamic characteristics of a Swing Motion Bogie, such as a critical speed and a carbody vibration, are investigated in reply to the request of the Meridian Rail Corporation in the United States. Also described are experimental results of the maximum speed, the derailment coefficient, the lateral force, the vertical force, the vibration acceleration and steady state lateral acceleration measured from main line tests.

Evaluation of critical speed & running performance for Swing Motion Bogie (스웡모션보기의 임계속도와 주행성능 평가)

  • 함영삼;허현무;오택열
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.892-897
    • /
    • 2002
  • The research was requested by Meridian Rail Corporation in United States. The Swing Motion Bogie can application by Korea style if synthesize study result of bogie strength evaluation, bogie dynamic characteristics analysis, actual test(maximum speed, derailment coefficient, lateral force, vertical force, vibration acceleration, steady state lateral acceleration) etc..

  • PDF

Investigation for the Characters of Human Perception Level according to Acceleration Value Parameters (가속도 크기 변수에 따른 수직진동에 대한 인지수준 고찰)

  • Lee, MinJung;Han, SangWhan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.731-740
    • /
    • 2014
  • Occupants induced floor vertical vibrations may cause other occupant's annoyance and lead to social loss. To help control such floor vibrations, several criteria have been developed mostly based on human perception tests and floor vibration tests. Floor vibration is evaluated by comparison with criteria and vibration parameters of subject floor, such as frequency, damping ratio, acceleration value, vibration duration time and occurrence frequency. Three acceleration value parameters are used in criteria; peak acceleration, rms acceleration and VDV, when a floor vibration serviceability is evaluated. Meanwhile rms acceleration and peak acceleration are adopted as vibration limit value in criteria and researches of human perception for vibration. Occupants induced floor vibration is transient rather than steady state. However, rms acceleration is not reliable parameter for evaluating transient vibration. The objective of this study is to investigate the characters of human perception level according to acceleration value parameters for vibration induced by heel impacts and walking activities.

Interaction of burning droplets with internal circulation (내부순환유동을 고려한 연소하는 액적들의 상호작용)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.183-191
    • /
    • 2004
  • The burning characteristics of interacting droplets with internal circulation in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged droplets, both the fixed droplet distances of 5 radii to 40 radii horizontally and 4 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of droplet internal motion with the horizontal or vertical droplet spacing substantially influence lifetime of interacting droplets. At a low Reynolds number, lifetime of the two droplets with decreasing horizontal droplet spacing increases monotonically, whereas their lifetime with decreasing vertical droplet spacing decreases due to flow acceleration. This flow acceleration effect is reversed when the vertical droplet spacing is smaller than 5 radii in which decreasing flame penetration depth causes the reduction of heat transfer from flame to droplets. At a high Reynolds number, however, lifetime of the first droplet is hardly affected by either the horizontal droplet spacing or flow acceleration effect. Lifetime with decreasing vertical droplet spacing increases due to reduction of flame penetration depth. Lifetime of interacting droplets exhibits a strong dependence on Reynolds number, the horizontal droplet spacing and the vertical droplet spacing and can be con-elated well with these conditions to that of single burning droplet.

  • PDF

Effects of vertical component of near-field ground motions on seismic responses of asymmetric structures supported on TCFP bearings

  • Mehr, Nasim Partovi;Khoshnoudian, Faramarz;Tajammolian, Hamed
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.641-656
    • /
    • 2017
  • The effects of vertical component of earthquakes on torsional amplification due to mass eccentricity in seismic responses of base-isolated structures subjected to near-field ground motions are studied in this paper. 3-, 6- and 9-story superstructures and aspect ratios of 1, 2 and 3 have been modeled as steel special moment frames mounted on Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratios. Three-dimensional linear superstructures resting on nonlinear isolators are subjected to both 2 and 3 component near-field ground motions. Effects of mass eccentricity and vertical component of 25 near-field earthquakes on the seismic responses including maximum isolator displacement and base shear as well as peak superstructure acceleration are studied. The results indicate that the effect of vertical component on the responses of asymmetric structures, especially on the base shear is significant. Therefore, it can be claimed that in the absence of the vertical component, mass eccentricity has a little effect on the base shear increase. Additionally, the impact of this component on acceleration is remarkable so the roof acceleration of a nine-story structure has been increased 1.67 times, compared to the case that the structure is subjected to only horizontal components of earthquakes.

Characteristics of Vertical Acceleration at Center of Mass of the Body in Normal Gait (정상보행시 체중심의 수직 가속도 특성)

  • Yi, Jin-Bock;Kang, Sung-Jae;Kim, Young-Ho
    • Physical Therapy Korea
    • /
    • v.9 no.3
    • /
    • pp.39-46
    • /
    • 2002
  • In this study, vertical acceleration of center of mass was observed along normal gait phases in 9 healthy male volunteers (aged $25.7{\pm}2.18$). The developed wireless accelerometric device was attached on the intervertebral space between L3 and L4 using a semi-elastic waist belt. A three-dimensional motion analysis system, synchronized with the accelerometry, was used for detecting gait phases. There was no significant correlation between the body weight and the acceleration. The first peak curve covered loading response phase. The second downward peak point was matched accurately with the opposite toe-off. In mid-stance and terminal stance, the acceleration curve highly resembled the vertical ground reaction force curve. There was no significant difference in timing between the final upward peak point and the initial contact. Therefore, the developed accelerometry system would be helpful in determining determine temporal gait pattems in patients with gait disorders.

  • PDF

Effects of High Damping Rubber Bearing on Horizontal and Vertical Seismic Responses of a Pressurized Water Reactor

  • Bong Yoo;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1021-1026
    • /
    • 1995
  • The seismic responses of a base isolated Pressurized Water Reactor (PWR) are investigated using a mathematical model which expresses the superstructure as lumped mass-spring model and the seismic isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 E1 Centre earthquakes in both horizontal and vertical directions. In the analysis, structural damping of 5% is used for the superstructure. The isolator damping ratios of 12% for horizontal and 5% for vertical directions are used. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure in horizontal direction. However, the vertical acceleration responses at the superstructure in the base isolation system are amplified to some extent. It is suggested that the vertical seismic responses at the superstructure should be reduced by introducing a soft vertical isolation device.

  • PDF

Development of Vibration Compensator for Vertical Vibration Damping of Ships (선박의 수직방향 진동 감쇠를 위한 진동보상기의 개발)

  • Jung, Min Je;Kim, Tae Ok;Ahn, Jung Hwan;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.205-210
    • /
    • 2020
  • The aim of this study is to develop a vertical vibration compensator that attenuates the vertical vibration of ships. The vibration compensator was designed according to the principle of generating vertical excitation forces by rotating two eccentric bodies of the same mass in opposite directions at the same rotational speed. In addition, the structural stability was analyzed using the finite element method. The maximum stress in the drive shaft was 95.6 MPa, which was approximately 35% of the allowable stress of the shaft material (SM45C, 270 MPa). The acceleration signals of the vibrator compensator body and the testbed were determined to evaluate the efficiency of the vibration compensator and the designed excitation forces. Subsequently, the excitation forces were estimated based on the relationship between force and acceleration. The estimated results were very close to the theoretical values with an error of less than 3%.

A Study on the Improvement of Co-Co Type Locomotive's Vertical Dynamic Performance (Co-Co형 기관차의 수직방향 동적성능 향상에 관한 연구)

  • Park, Ju-Hyuk;Choe, Yeong-Hyu;Park, Sam-Jin
    • 한국기계연구소 소보
    • /
    • s.14
    • /
    • pp.17-31
    • /
    • 1985
  • The Primary object of this study is to predict rigid carbody's vertical and pitch acceleration and/or displacement frequency response to vertical sinusoidal rail surface irregularities for any specified point of the carbody, and to verify the predictions by means of experiments. The developed computer program also calculates vertical and pith transmissibilities and acceleration spectra. This model can be used for first order analysis of ride behabior. it's main advantage is its simplicity and ease of use. This model can be used for first order analysis of ride quality behabior. It's main advantage is its simplicity and ease of use. The model was designed with 6 degreed of freedom. Equations of motion were derived by Lagrangian method. This calculation was applied to the vertical dynamic analysis in order to pursue a possible improvement of the dynamic performance of co-co locomotive, and results were very useful.

  • PDF