• 제목/요약/키워드: vertical acceleration

검색결과 478건 처리시간 0.022초

Effect of seismic acceleration directions on dynamic earth pressures in retaining structures

  • Nian, Ting-Kai;Liu, Bo;Han, Jie;Huang, Run-Qiu
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.263-277
    • /
    • 2014
  • In the conventional design of retaining structures in a seismic zone, seismic inertia forces are commonly assumed to act upwards and towards the wall facing to cause a maximum active thrust or act upwards and towards the backfill to cause a minimum passive resistance. However, under certain circumstances this design approach might underestimate the dynamic active thrust or overestimate the dynamic passive resistance acting on a rigid retaining structure. In this study, a new analytical method for dynamic active and passive forces in c-${\phi}$ soils with an infinite slope was proposed based on the Rankine earth pressure theory and the Mohr-Coulomb yield criterion, to investigate the influence of seismic inertia force directions on the total active and passive forces. Four combinations of seismic acceleration with both vertical (upwards or downwards) and horizontal (towards the wall or backfill) directions, were considered. A series of dimensionless dynamic active and passive force charts were developed to evaluate the key influence factors, such as backfill inclination ${\beta}$, dimensionless cohesion $c/{\gamma}H$, friction angle ${\phi}$, horizontal and vertical seismic coefficients, $k _h$ and $k_v$. A comparative study shows that a combination of downward and towards-the-wall seismic inertia forces causes a maximum active thrust while a combination of upward and towards-the-wall seismic inertia forces causes a minimum passive resistance. This finding is recommended for use in the design of retaining structures in a seismic zone.

Robust optimum design of MTMD for control of footbridges subjected to human-induced vibrations via the CIOA

  • Leticia Fleck Fadel Miguel;Otavio Augusto Peter de Souza
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.647-661
    • /
    • 2023
  • It is recognized that the installation of energy dissipation devices, such as the tuned mass damper (TMD), decreases the dynamic response of structures, however, the best parameters of each device persist hard to determine. Unlike many works that perform only a deterministic optimization, this work proposes a complete methodology to minimize the dynamic response of footbridges by optimizing the parameters of multiple tuned mass dampers (MTMD) taking into account uncertainties present in the parameters of the structure and also of the human excitation. For application purposes, a steel footbridge, based on a real structure, is studied. Three different scenarios for the MTMD are simulated. The proposed robust optimization problem is solved via the Circle-Inspired Optimization Algorithm (CIOA), a novel and efficient metaheuristic algorithm recently developed by the authors. The objective function is to minimize the mean maximum vertical displacement of the footbridge, whereas the design variables are the stiffness and damping constants of the MTMD. The results showed the excellent capacity of the proposed methodology, reducing the mean maximum vertical displacement by more than 36% and in a computational time about 9% less than using a classical genetic algorithm. The results obtained by the proposed methodology are also compared with results obtained through traditional TMD design methods, showing again the best performance of the proposed optimization method. Finally, an analysis of the maximum vertical acceleration showed a reduction of more than 91% for the three scenarios, leading the footbridge to acceleration values below the recommended comfort limits. Hence, the proposed methodology could be employed to optimize MTMD, improving the design of footbridges.

다성분 해저면 탄성파 탐사자료에 대한 음향파 완전파형역산 전략 (Acoustic Full-waveform Inversion Strategy for Multi-component Ocean-bottom Cable Data)

  • 황종하;오주원;이진형;민동주;정희철;송영수
    • 지구물리와물리탐사
    • /
    • 제23권1호
    • /
    • pp.38-49
    • /
    • 2020
  • 음향파 완전파형역산은 탄성파 탐사를 통해 얻은 관측자료와 음향파 모델링자료를 맞춤으로써 지층의 속도모델을 고해상도로 구축하는 최적화 과정이다. 기존의 스트리머를 이용한 해양 탄성파 탐사 자료에 대한 음향파 완전파형역산에서는 압력자료만을 활용하여 P파 속도모델을 구축한다. 그러나 최근 다성분 해저면 탄성파 탐사기술의 발달로 다성분자료의 취득 사례가 늘고 있으며, 이에 따라 해양에서 얻어지는 다성분 자료를 활용한 음향파 완전파형역산 기법에 대한 연구가 필요하다. 이 연구에서는 수평 및 수직 입자가속도 자료를 활용한 효과적인 음향파 완전파형역산 전략을 제시하고자 한다. 이를 위해, 우선 음향파 모델링으로 제작된 압력 및 입자가속도 자료와 민감도커널을 분석하여 파형역산 과정에서 각 자료의 성분별 특성을 관찰하였다. 압력 자료에 함께 나타났던 직접파, 다이빙파 및 반사파가 수직 및 수평 입자가속도 자료에서 파동의 진행방향에 따라 분리되어 나타나는 것을 확인하였으며, 수평 입자가속도 자료는 상부의 장파장구조를, 수직 입자가속도 자료는 하부의 장파장구조와 전체 영역에서의 단파장구조를 구축하는 데 효과적임을 확인할 수 있었다. 이러한 분석 결과를 바탕으로 입자가속도 자료만을 활용해 음향파 완전파형역산을 수행하는 순차적 자료 활용전략을 제시하며, 압력자료를 얻지 못하였거나 품질이 낮은 경우에도 입자가속도 자료를 활용하는 음향파 완전파형역산을 통해 양호한 P파 속도모델을 구축할 수 있을 것으로 기대된다.

차량가속도데이터를 이용한 머신러닝 기반의 궤도품질지수(TQI) 예측 (Prediction of Track Quality Index (TQI) Using Vehicle Acceleration Data based on Machine Learning)

  • 최찬용;김현기;김영철;김상수
    • 한국지반신소재학회논문집
    • /
    • 제19권1호
    • /
    • pp.45-53
    • /
    • 2020
  • 철도분야에서도 계측자료를 바탕으로 머신러닝 기법을 이용하여 예측 분석하는 시도가 점차적으로 증가하고 있는 실정이다. 이 논문에서는 열차의 차상가속도 데이터를 기반으로 궤도의 품질을 결정하는 지표 중에 하나인 궤도품질지수를 머신러닝 기법을 활용하여 예측하였다. 머신러닝 기법으로 활용하고 있는 대표적인 3개의 모델로 궤도품질지수를 예측하여 가장 정확도가 높은 모델은 XGBoost으로 데이터셋에서 85% 이상의 예측정확도를 보였다. 또한 윤축과 대차의 z축의 진동가속도가 고저 궤도품질지수의 기여도가 높은 것으로 나타났으며, 이는 기존 연구결과와도 잘 일치하였다. 이러한 결과를 볼 때 단일 알고리즘인 서포터 벡터머신보다는 앙상블 알고리즘을 적용한 랜덤포레스트와 XGBoost이 정확도가 높은 것으로 판단된다. 따라서 머신러닝 기법에서 적용모델에 따라 정확도가 달라질 수 있기 때문에 차량진동가속도를 이용한 궤도품질지수를 예측하기 위해서는 앙상블 알고리즘을 가지는 모델을 적용하는 것이 적절할 것으로 판단된다.

가속도 신호를 이용한 걸음걸이 패턴 분류 (Classification of walking patterns using acceleration signal)

  • 조형국;예수영
    • 한국정보통신학회논문지
    • /
    • 제14권8호
    • /
    • pp.1901-1906
    • /
    • 2010
  • 걸음걸이 패턴 분류는 많은 응용분야가 있을 뿐만 아니라 매우 중요한 연구 분야이다. 따라서 본 연구에서는 허리에 부착된 가속도 모듈로부터 획득된 신호를 이용하여 천천히 걷기(slow walking, S.W), 일반 걷기(normal walking, N.W), 빠르게 걷기(fast walking, F.W) 등의 보행 패턴을 분류하고자한다. 11명의 성인으로부터 블루트스 모듈을 이용하여 100Hz로 샘플링된 3축 가속도 신호를 획득하였다. 획득된 데이터는 웨이브렛 변환을 이용하여 분석하였다. 걸음걸이 패턴은 두가지의 파라미터들을 이용하여 분석되어지는데, 하나는 운동에 해당하는 웨이브렛 계수의 에너지(power)와 전 후방향의 전체 에너지사이의 비율(RPA)이고, 다른 파라미터는 전 후 방향과 상 하 수직 방향 사이에서 웨이브렛 계수의 제곱근 평균 비율(RAV)이다. 천천히 걷기는 다른 걷기와 비교했을 때 작은 RPA값을 가지게 되어 분류가 용이하며, 천천히 걷기는 RAV를 이용하여 일반 걷기와 구별되어 질 수 있었다. 따라서 본연구는 건강한 성인에게서 3축 가속도 신호를 획득한 후 웨이브렛 파라미터를 이용하여 걷기 패턴을 잘 구별할 수 있는 연구임을 확인 하였다.

Seismic responses of a free-standing two-story steel moment frame equipped with a cast iron-mortar sliding base

  • Chung, Yu-Lin;Kuo, Kuan-Ting;Nagae, Takuya;Kajiwara, Koichi
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.245-256
    • /
    • 2019
  • An experimental study was conducted to evaluate the dynamic behavior of a free-standing frame equipped with a movable base system using cast iron and mortar as the bearing materials. The preliminary friction test indicated that a graphite layer developed on the interface and exhibited stable friction behavior. The friction coefficient ranged from 0.33 to 0.36 when the applied normal compression stress ranged from 2.6 to 5.2 MPa. The effect of the variation of normal compression stress would be small. Shaking table tests on the free-standing frame showed that rock, slide, and rock-slide responses occurred. The cumulative slide distance reached 381 mm under JMA Kobe wave excitation; however, only a few cyclic slides occurred at the same locations along the moving track. Most surfaces sustained single slides. Similar results can be observed in other shaking conditions. The insufficient cyclic sliding and significant rocking resulted in a few graphite layers on the mortar surfaces. Friction coefficients were generally similar to those obtained in the preliminary friction tests; however, the values fluctuated when the rocking became significant. The collisions due to rocking caused strong horizontal acceleration responses and resulted in high friction coefficient. In addition, the strong horizontal acceleration responses caused by the collisions made the freestanding specimen unable to reduce the input horizontal acceleration notably, even when slippage occurred. Compared with the counterpart fixed-base specimen, the specimen equipped with the iron-mortar base could reduce the horizontal acceleration amplification response and the structural deformation, whereas the vertical acceleration response was doubled due to collisions from rocking.

볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성 (Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports)

  • 서정화;김태호
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.

고속철도 강교량의 진동특성 분석 (Dynamic Characteristics of High-speed Railway Steel Bridges)

  • 이정휘;김성일;곽종원;이필구;윤태양
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.632-637
    • /
    • 2007
  • The dynamic behavior of two steel bridges crossed by the Korean High Speed Train(KHST) has been investigated experimentally and the results are compared with the specification requirement of BRDM and other typical PSC Box bridge's responses. The investigated bridges are a 2-girder steel bridge of 1@40m span length(E-Won Bridge), 2@50m span length (Ji-Tan Bridge), and a PSC Box girder bridge of 2@40m span length (Yeon-Jae Bridge). A set of experimental tests were performed during operation of KHST, and a number of accelerometers, LVDTs and ring-type displacement transducers were utilized for measurement of three kinds of dynamic responses (acceleration, deflection, and end-rotation angle). Measured responses show that the vertical deflections and end-rotation angles of the three bridges are all satisfying the spec. requirement with large margin, but it was also found acceleration responses which are very close or exceed the limit value. Most of the excessive acceleration responses were found when the passing velocity of the KHST is close to the critical velocity ($V_{cr}$) which causes resonance. No noticeable differences of dynamic responses due to the different materials(steel or concrete) could be found within these experimental results.

서보모터의 가감속형태에 따른 운도오차에 관한 연구 (A study on motion errors due to acceleration and deceleration types of servo motors)

  • 신동수;정성종
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1718-1729
    • /
    • 1997
  • This paper describes motion errors due to acceleration and deceleration types of servo motors in NC machine tools. Motion errors are composed of two components : one is due to transient response of a servomechanism and the other comes from gain mismatching of positioning servo motors. It deals with circular interpolation to identify motion errors by using Interface card. Also in order to minimize motion errors, this study presents an effective method to optimize parameters which are connected with motion errors. The proposed method is based upon a second order polynomial regression model and it includes an orthogonal array method to make the effective results of experiments. The validity and reliability of the study were verified on a vertical machining center equipped with FANUC 0MC through a series of experiments and analysis.

한국형 고속전철의 주행조건에 따른 진동특성 분석에 관한 연구 (A Study on the Vibration Characteristics due to the Running Conditions for Korean High Speed Train)

  • 박찬경;한영재;김영국;김석원;최강윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(I)
    • /
    • pp.125-130
    • /
    • 2003
  • Korean High Speed Train (KHST) designed to operate at 350km/h has been tested on high speed line in JungBu site since it was developed in 2002. The dynamic performances of railway vehicle are generally stability, safety and ride comfort. The stability performance of KHST was proved that it is stable at 400Km/h through Roller Rig test. The safety and ride comfort need to be predicted the capability of it at 350km/h by the on-line test because KHST is testing at 300km/h up to now. Therefor, in this paper, the safety and ride comfort at 350km/h are predicted the performance using the acceleration results at 300kw/h and these results show that the KHST's dynamic performances are very good. Also, it illustrate the two cases occurred the abnormal vibration of KHST during some on-line tests. The first case is that the variation of vertical acceleration of wheel is analyzed when an abrasion occur on wheel. The second case is that the lateral acceleration of wheel, bogie and body are analyzed when the KHST is unstable at high speed. The occurrences of these special phenomena were due to the some faults of the suspension and braking systems and the faults were improved. In present, it is testing with safety.

  • PDF