• Title/Summary/Keyword: vertex-transitive graph

Search Result 4, Processing Time 0.016 seconds

SEMI-SYMMETRIC CUBIC GRAPH OF ORDER 12p3

  • Amoli, Pooriya Majd;Darafsheh, Mohammad Reza;Tehranian, Abolfazl
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.203-212
    • /
    • 2022
  • A simple graph is called semi-symmetric if it is regular and edge transitive but not vertex transitive. In this paper we prove that there is no connected cubic semi-symmetric graph of order 12p3 for any prime number p.

GENERALIZED CAYLEY GRAPHS OF RECTANGULAR GROUPS

  • ZHU, YONGWEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1169-1183
    • /
    • 2015
  • We describe generalized Cayley graphs of rectangular groups, so that we obtain (1) an equivalent condition for two Cayley graphs of a rectangular group to be isomorphic to each other, (2) a necessary and sufficient condition for a generalized Cayley graph of a rectangular group to be (strong) connected, (3) a necessary and sufficient condition for the colour-preserving automorphism group of such a graph to be vertex-transitive, and (4) a sufficient condition for the automorphism group of such a graph to be vertex-transitive.

SEMISYMMETRIC CUBIC GRAPHS OF ORDER 34p3

  • Darafsheh, Mohammad Reza;Shahsavaran, Mohsen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.739-750
    • /
    • 2020
  • A simple graph is called semisymmetric if it is regular and edge transitive but not vertex transitive. Let p be a prime. Folkman proved [J. Folkman, Regular line-symmetric graphs, Journal of Combinatorial Theory 3 (1967), no. 3, 215-232] that no semisymmetric graph of order 2p or 2p2 exists. In this paper an extension of his result in the case of cubic graphs of order 34p3, p ≠ 17, is obtained.

SCORE SEQUENCES IN ORIENTED GRAPHS

  • Pirzada, S.;Naikoo, T.A.;Shah, N.A.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.257-268
    • /
    • 2007
  • An oriented graph is a digraph with no symmetric pairs of directed arcs and without loops. The score of a vertex $v_i$ in an oriented graph D is $a_{v_i}\;(or\;simply\;a_i)=n-1+d_{v_i}^+-d_{v_i}^-,\;where\; d_{v_i}^+\;and\;d_{v_i}^-$ are the outdegree and indegree, respectively, of $v_i$ and n is the number of vertices in D. In this paper, we give a new proof of Avery's theorem and obtain some stronger inequalities for scores in oriented graphs. We also characterize strongly transitive oriented graphs.